备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx

上传人:b****5 文档编号:21340277 上传时间:2023-01-29 格式:DOCX 页数:11 大小:459.11KB
下载 相关 举报
备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx_第1页
第1页 / 共11页
备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx_第2页
第2页 / 共11页
备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx_第3页
第3页 / 共11页
备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx_第4页
第4页 / 共11页
备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx

《备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx》由会员分享,可在线阅读,更多相关《备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx(11页珍藏版)》请在冰豆网上搜索。

备考 志鸿优化设计版中考数学总复习北师讲解文档格式.docx

垂线段最短

2.点到直线的距离:

3.判定:

若两条直线相交且有一个角为直角,则这两条直线互相垂直.考点四平行线的性质与判定

在同一平面内,不相交的两条直线,叫平行线.

2.平行公理:

经过直线外一点,有且只有一条直线与已知直线平行.

3.性质:

如果两条直线平行,那么同位角相等,内错角相等,同旁内角互补.

4.判定:

同位角相等,两直线平行;

内错角相等,两直线平行;

同旁内角互补,两直线平行;

在同一平面内垂直于同一直线的两直线平行,平行于同一直线的两直线平行.

1.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则

AC的长为(.

A.3cmB.6cmC.11cmD.14cm

2.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°

,则∠BOD的度数是(.

A.35°

B.55°

C.70°

D.110°

3.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°

,则∠COE的度数是(.

A.125°

B.135°

C.145°

D.155°

4.如图,已知∠1=∠2=∠3=62°

,则∠4=

__________.

5.如图,EF⊥GF于F,∠AEF=150°

,∠DGF=60°

,试判断AB和CD的位置关系,并说明理由.

一、直线、射线、线段

【例1】在直线l上任取一点A,截取AB=16cm,再截取AC=40cm,求AB的中点D与AC的中点E的距离.

解:

(1当C在AB的延长线上时,如图,

∵D是AB的中点,AB=16cm,

∴AD=AB21

2

16=8cm.

∵E是AC的中点,AC=40cm,

∴AE=12AC1

40=20cm.

∴DE=AE-AD=20-8=12cm.

(2当C在BA的延长线上时,如图,由(1知AD=8cm,AE=20cm.

∴DE=AE+AD=20+8=28cm.

答:

D点与E点的距离是12cm或

28cm.

对于线段的和、差关系以及线段的中点问题的计算,需结合图形,认真观察分析.若已知线段上给出的点未明确其位置,还需要分类讨论,千万不要漏解.

二、角的计算

【例2】如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°

30′,则下列结论中不正确的是(.

A.∠2=45°

B.∠1=∠3

C.∠AOD与∠1互为补角

D.∠1的余角等于75°

30′

解析:

利用两直线互相垂直的性质得∠2=1

∠AOE=45°

,A正确;

利用对顶角性质,

则B正确;

利用互为邻补角定义,则C也正确;

而根据互为余角的定义知:

90°

-∠1=90°

-15°

30′=74°

30′,故D不正确.

答案:

D

有关图形中的角的计算问题,首先要从图形中读出具有度量关系的角;

如互余、互补、对顶角等,然后合理利用相关的定义、性质求解.

三、平行线的性质与判定

【例3】如图,已知AB∥CD,BE平分∠ABC,交CD于D点,∠CDE=150°

,则∠C为(.

A.120°

B.150°

C.135°

D.110°

∵∠CDE=150°

,∴∠CDB=30°

.∵CD∥AB,∴∠ABD=30°

.

∵BE平分∠ABC,∴∠ABC=60°

.∴∠C=180°

-60°

=120°

.答案:

A

运用平行线的性质和判定常用来解决下列问题:

(1作图形的平移;

(2证明线段或角相等;

(3证明两直线平行;

(4证明两直线垂直.

如图,l∥m,∠1=115°

,∠2=95°

,则∠3=(.

B.130°

D.150°

1.(2012重庆已知:

如图,BD平分∠ABC,点E在BC上,EF∥AB,若∠CEF=100°

,则∠ABD的度数为(.

A.60°

B.50°

C.40°

D.30°

2.(2012山东临沂如图,AB∥CD,DB⊥BC,∠1=40°

,则∠2的度数是(.

A.40°

C.60°

D.140°

3.(2012湖南长沙下列四个角中,最有可能与70°

角互补的是(.

4.(2011山东枣庄如图,直线AB∥CD,∠A=70°

,∠C=40°

,则∠E等于(.

A.30°

B.40°

D.70°

5.(2011四川雅安如图,直线l1,l2被直线l3所截,且l1∥l2,若∠1=72°

,∠2=58°

A.45°

D.58°

6.(2011江苏盐城已知∠MAN,AC平分∠MAN.

①②③

(1在①中,若∠MAN=120°

,∠ABC=∠ADC=90°

,我们可得结论:

AB+AD=AC;

在图②中,若∠MAN=120°

,∠ABC+∠ADC=180°

,则上面的结论是否仍然成立?

若成立,请给出证明;

若不成立,请说明理由;

(2在图③中:

(只要填空,不需要证明①若∠MAN=60°

,则AB+AD=__________AC;

②若∠MAN=α(0°

<α<180°

,∠ABC+∠ADC=180°

,则AB+AD=__________AC(用含α的三角函数表示.

1.下面四个图形中,能判断∠1>∠2的是(.

2.如图,直线l1∥l2,则∠α为(.

A.150°

B.140°

C.130°

D.120°

3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是(.

A.第一次向左拐30°

,第二次向右拐30°

B.第一次向右拐50°

,第二次向左拐130°

C.第一次向左拐50°

,第二次向右拐130°

D.第一次向左拐50°

4.将一直角三角板与两边平行的纸条如图所示放置.下列结论:

①∠1=∠2;

②∠3=∠4;

③∠2+∠4=90°

④∠4+∠5=180°

,其中正确的个数是(.

A.1个B.2个C.3个D.4个

5.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°

,∠BDE=60°

,则∠CDB的度数等于__________.

6.如图,直线a∥b,直线AC分别交a,b于点B,C,直线AD交a于点D.若∠1=20°

,∠2=65°

,则∠3=__________.

7.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°

,则∠AEG=__________.8.如图所示,已知AB∥CD,直线EF分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P.求证:

∠P=90°

.9.(1如图,∠AOB=90°

,∠BOC=30°

,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.(2如果(1中∠AOB=α,其他条件不变,求∠MON的度数.(3如果(1中∠BOC=β(β为锐角,其他条件不变,求∠MON的度数.(4从(1(2(3的结果能看出什么规律?

(5线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1~(4,设计一道以线段为背景的计算题,写出其中的规律来?

参考答案基础自主导学自主测试1.B2.C3.B4.118°

5.解:

AB∥CD.如图,作FH∥AB,则∠AEF+∠EFH=180°

又∠AEF=150°

,∴∠EFH=30°

.又∠EFG=90°

,∴∠HFG=60°

.而∠DGF=60°

,∴∠HFG=∠FGD.∴HF∥CD.又AB∥HF,∴AB∥CD.[来源:

学科网]规律方法探究变式训练D知能优化训练中考回顾1.B2.B3.D4.A5.B6.解:

(1成立.证法一:

如图(甲,过点C分别作AM,AN的垂线,垂足分别为E,F.图(甲∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°

,∠ADC+∠CDE=180°

,∴∠CDE=∠ABC.∵∠CED=∠CFB=90°

,∴△CED≌△CFB.∴ED=FB.∴AB+AD=AF+BF+AE-ED=AF+AE,由(1知AF+AE=AC,∴AB+AD=AC.证法二:

如图(乙,在AN上截取AG=AC,连接CG.图(乙∵∠CAB=60°

,AG=AC,∴∠AGC=60°

,CG=AC=AG.∵∠ABC+∠ADC=180°

,∠ABC+∠CBG=180°

,∴∠CBG=∠ADC.∴△CBG≌△CDA.∴BG=AD.∴AB+AD=AB+BG=AG=AC.α(2①3②2cos2模拟预测1.D2.D3.A4.D5.110°

6.45°

7.130°

8.证明:

因为AB∥CD,所以∠BEF+∠DFE=180°

.11因为∠PEF=∠BEF,∠PFE=∠DFE,221所以∠PEF+∠PFE=(∠BEF+∠DFE=90°

.2因为∠PEF+∠PFE+∠P=180°

,所以∠P=90°

.11119.解:

(1∠MON=∠COM-∠CON=∠AOC-∠BOC=×

120°

-×

30°

=45°

2222[来源:

学#科#网Z#X#X#K]

11111(2∠MON=∠COM-∠CON=∠AOC-∠BOC=(α+30°

=α;

222221111(3∠MON=∠COM-∠CON=∠AOC-∠BOC=(90°

+β-β=45°

2222(4∠MON的大小等于∠AOB的一半,而与∠BOC的大小无关;

(5如图,设线段AB=a,延长AB到C,使BC=b,点M,N分别为AC,BC的中点,求MN的长.规律是:

MN的长度总等于AB的长度的一半,而与BC的长度无关.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 视频讲堂

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1