WiFi射频电路布线指导Word下载.docx

上传人:b****5 文档编号:21238664 上传时间:2023-01-28 格式:DOCX 页数:14 大小:658.60KB
下载 相关 举报
WiFi射频电路布线指导Word下载.docx_第1页
第1页 / 共14页
WiFi射频电路布线指导Word下载.docx_第2页
第2页 / 共14页
WiFi射频电路布线指导Word下载.docx_第3页
第3页 / 共14页
WiFi射频电路布线指导Word下载.docx_第4页
第4页 / 共14页
WiFi射频电路布线指导Word下载.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

WiFi射频电路布线指导Word下载.docx

《WiFi射频电路布线指导Word下载.docx》由会员分享,可在线阅读,更多相关《WiFi射频电路布线指导Word下载.docx(14页珍藏版)》请在冰豆网上搜索。

WiFi射频电路布线指导Word下载.docx

两层板设计中应该注意的问题,在本站有文章专门讨论过,详见。

在四层板的设计中,我们一般会将第二层作为完整的地平面,同时,也会把重要的信号线走在顶层(当然包括射频走线),以便于很好的控制阻抗。

在六层板或者更多层板的设计中,我们同样会将第二层作为完整的地平面,然后在顶层走最重要的信号线。

PS:

可以使用Polar计算单端阻抗与阻抗等,有些Layout软件自身就集成了阻抗计算器,如Allegro。

阻抗控制

在我们进行原理设计与仿真之后,在Layout中很值得注意的一件事情就是阻抗控制。

众所周知,我们应该尽量保证走线的特征是50欧姆,这主要和线宽有关,在本实例中,是两层半,在Polar中采用SurfaceCoplanarLine模型进行阻抗的计算,我们可以得到一组比较理想的值:

Height(H)=39.6mil,Track(W)=30mil,Track(W1)=30mil,Thickness=1OZ=1.4mil,Separation(S)=7mil,Dielectric(Er)=4.2,对应的特征阻抗是52.14欧姆,符合要求。

如下图中高亮的线就是这样的一条射频走线。

射频元器件的摆放

相信做过射频设计的人都应该知道,我们应该尽可能的使走线的长度较短,元器件摆放的越紧凑越好(特殊要求除外),同时,也会尽可能的保证元器件的摆放对布线很有利(不要使走线绕来绕去的)。

如下图,是射频功率放大器(PA,PowerAmplifier)的周围器件的摆放,我们看到,元器件之间的距离很小。

射频走线应该注意的问题

如前所述,射频走线的长度要尽量短,线宽严格按照计算好的值去设定。

在走线是尤其要注意的是,射频走线中不要有任何带有尖状的折点,在走线的转折处,最好要用弧线来实现,如下图

其次,在多层板的走线中,有可能重要的射频线要产生不可避免的交叉,这时我们就要使用我们最不想使用的东西:

过孔。

这样,会有部分射频信号线走到底层甚至中间层,但无论是哪一层,射频走线一定会有参考平面,这时一个值得注意的问题就是不要跨层,或者说不要使地平面不连续。

过孔的放置

过孔的放置真的是一件比较复杂的事情,本文只讨论那种接地的过孔。

首先,射频走线的旁边的地线最好能通过过孔打穿,接到底层或者中间层的地平面上,这样可以是任何干扰信号或者辐射有最短的到地的通路,但是,过孔与射频信号线的距离又不能太近,否则会严重影响射频信号质量,在实际的设计过程中可灵活把握,如下图,我们看到,高亮的信号线两层分布着很多过孔。

其次,在面积较大的地平面处,我们通常会放置很多的过孔用于连接不同层的地。

这在射频电路的布线中,要注意的就是大过孔要没有规律的打,最好能弄成菱形的,这样可以最大限度的抑制各种干扰。

在以上的内容中,简单的介绍了射频电路布线中应该注意的一些问题,当然也不一定就是绝对的,我总结的只是一般规律,希望能够对大家有所帮助。

对了,本文中所用的实例就是Radiobook的一个经典设计,详情请咨询。

两层板(双面板)如何控制50欧特性阻抗

2009/07/14 

我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。

如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。

什么是特性阻抗?

是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。

由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。

不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。

电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。

目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。

两层板如何有效的控制特性阻抗?

在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。

但是,在两层板的情况下,就不一样了。

两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。

例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图

线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。

在2.4GHz或者5GHz频段,各种元件的引脚都是很小的,70mil的走线是无法实现的,于是,我们必须寻找另外一种解决方案。

运行Polar软件,选择SurfaceCoplanarLine这个模型,如下图

令Height(H)=39.6mil,Track(W)=30mil,Track(W1)=30mil,GroundPlane处打勾,Thickness=1OZ=1.4mil,Separation(S)=7mil,Dielectric(Er)=4.2,如下图

然后点击“PressToCaculate”,在弹出的对话框中点击“Continue”,如下图

最终,我们计算出这种情况下的传输线特性阻抗为52.14欧姆,符合要求,如下图:

这样,我们采用SurfaceCoplanarLine这种模型,就可以很好的控制两层板(双面板)的特性阻抗,在上面的例子中,我们使用30mil的线宽就可以获得50欧姆的特性阻抗。

从WiFi收发器的PCB布局看射频电路电源和接地的设计方法

2010-4-4 

 

射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地的基本原则的基础上进行。

本文探讨了相关的基本原则,并提供了一些实用的、经过验证的电源布线、电源旁路和接地技术,可有效提高RF设计的性能指标。

考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器

  射频(RF)电路的电路板布局应在理解电路板结构、电源布线和接地的基本原则的基础上进行。

考虑到实际设计中PLL杂散信号对于电源耦合、接地和滤波器元件的位置非常敏感,本文着重讨论了有关PLL杂散信号抑制的方法。

为便于说明问题,本文以MAX2827802.11a/g收发器的PCB布局作为参考设计。

图1:

星型拓扑的Vcc布线。

设计RF电路时,电源电路的设计和电路板布局常常被留到了高频信号通路的设计完成之后。

对于没有经过认真考虑的设计,电路周围的电源电压很容易产生错误的输出和噪声,这会进一步影响到RF电路的性能。

合理分配PCB的板层、采用星型拓扑的Vcc引线,并在Vcc引脚加上适当的去耦电容,将有助于改善系统的性能,获得最佳指标。

电源布线和旁路的基本原则

明智的PCB板层分配便于简化后续的布线处理,对于一个四层PCB板(WLAN中常用的电路板),在大多数应用中用电路板的顶层放置元器件和RF引线,第二层作为系统地,电源部分放置在第三层,任何信号线都可以分布在第四层。

第二层采用连续的地平面布局对于建立阻抗受控的RF信号通路非常必要,它还便于获得尽可能短的地环路,为第一层和第三层提供高度的电气隔离,使得两层之间的耦合最小。

当然,也可以采用其它板层定义的方式(特别是在电路板具有不同的层数时),但上述结构是经过验证的一个成功范例。

图2:

不同频率下的电容阻抗变化。

大面积的电源层能够使Vcc布线变得轻松,但是,这种结构常常是引发系统性能恶化的导火索,在一个较大平面上把所有电源引线接在一起将无法避免引脚之间的噪声传输。

反之,如果使用星型拓扑则会减轻不同电源引脚之间的耦合。

图1给出了星型连接的Vcc布线方案,该图取自MAX2826IEEE802.11a/g收发器的评估板。

图中建立了一个主Vcc节点,从该点引出不同分支的电源线,为RFIC的电源引脚供电。

每个电源引脚使用独立的引线在引脚之间提供了空间上的隔离,有利于减小它们之间的耦合。

另外,每条引线还具有一定的寄生电感,这恰好是我们所希望的,它有助于滤除电源线上的高频噪声。

使用星型拓扑Vcc引线时,还有必要采取适当的电源去耦,而去耦电容存在一定的寄生电感。

事实上,电容等效为一个串联的RLC电路,电容在低频段起主导作用,但在自激振荡频率(SRF):

之后,电容的阻抗将呈现出电感性。

由此可见,电容器只是在频率接近或低于其SRF时才具有去耦作用,在这些频点电容表现为低阻。

图2给出了不同容值下的典型S11参数,从这些曲线可以清楚地看到SRF,还可以看出电容越大,在较低频率处所提供的去耦性能越好(所呈现的阻抗越低)。

在Vcc星型拓扑的主节点处最好放置一个大容量的电容器,如2.2μF。

该电容具有较低的SRF,对于消除低频噪声、建立稳定的直流电压很有效。

IC的每个电源引脚需要一个低容量的电容器(如10nF),用来滤除可能耦合到电源线上的高频噪声。

对于那些为噪声敏感电路供电的电源引脚,可能需要外接两个旁路电容。

例如:

用一个10pF电容与一个10nF电容并联提供旁路,可以提供更宽频率范围的去耦,尽量消除噪声对电源电压的影响。

每个电源引脚都需要认真检验,以确定需要多大的去耦电容以及实际电路在哪些频点容易受到噪声的干扰。

良好的电源去耦技术与严谨的PCB布局、Vcc引线(星型拓扑)相结合,能够为任何RF系统设计奠定稳固的基础。

尽管实际设计中还会存在降低系统性能指标的其它因素,但是,拥有一个“无噪声”的电源是优化系统性能的基本要素。

图3:

过孔的电特性模型。

接地和过孔设计

地层的布局和引线同样是WLAN电路板设计的关键,它们会直接影响到电路板的寄生参数,存在降低系统性能的隐患。

RF电路设计中没有唯一的接地方案,设计中可以通过几个途径达到满意的性能指标。

可以将地平面或引线分为模拟信号地和数字信号地,还可以隔离大电流或功耗较大的电路。

根据以往WLAN评估板的设计经验,在四层板中使用单独的接地层可以获得较好的结果。

凭借这些经验性的方法,用地层将RF部分与其它电路隔离开,可以避免信号间的交叉干扰。

如上所述,电路板的第二层通常作为地平面,第一层用于放置元件和RF引线。

接地层确定后,将所有的信号地以最短的路径连接到地层非常关键,通常用过孔将顶层的地线连接到地层,需要注意的是,过孔呈现为感性。

图3所示为过孔精确的电气特性模型,其中Lvia为过孔电感,Cvia为过孔PCB焊盘的寄生电容。

如果采用这里所讨论的地线布局技术,可以忽略寄生电容。

一个1.6mm深、孔径为0.2mm的过孔具有大约0.75nH的电感,在2.5GHz/5.0GHzWLAN波段的等效电抗大约为12Ω/24Ω。

因此,一个接地过孔并不能够为RF信号提供真正的接地,对于高品质的电路板设计,应该在RF电路部分提供尽可能多的接地过孔,特别是对于通用的IC封装中的裸露接地焊盘。

不良的接地还会在接收前端或功率放大器部分产生有害的辐射,降低增益和噪声系数指标。

还需注意的是,接地焊盘的不良焊接会引发同样的问题。

除此之外,功率放大器的功耗也需要多个连接地层的过孔。

图4.以MAX2827参考设计板为例的PLL滤波器元件布局。

滤除其它级电路的噪声、抑制本地产生的噪声,从而消除级与级之间通过电源线的交叉干扰,这是Vcc去耦带来的好处。

如果去耦电容使用了同一接地过孔,由于过孔与地之间的电感效应,这些连接点的过孔将会承载来自两个电源的全部RF干扰,不仅丧失了去耦电容的功能,而且还为系统中的级间噪声耦合提供了另外一条通路。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1