操作系统实验报告进程同步与互斥Word文档下载推荐.docx
《操作系统实验报告进程同步与互斥Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《操作系统实验报告进程同步与互斥Word文档下载推荐.docx(11页珍藏版)》请在冰豆网上搜索。
stdio.h>
string>
conio.h>
//定义一些常量;
//本程序允许的最大临界区数;
#defineMAX_BUFFER_NUM10
//秒到微秒的乘法因子;
#defineINTE_PER_SEC1000
//本程序允许的生产和消费线程的总数;
#defineMAX_THREAD_NUM64
//定义一个结构,记录在测试文件中指定的每一个线程的参数
structThreadInfo
{
intserial;
//线程序列号
charentity;
//是P还是C
doubledelay;
//线程延迟
intthread_request[MAX_THREAD_NUM];
//线程请求队列
intn_request;
//请求个数
};
//全局变量的定义
//临界区对象的声明,用于管理缓冲区的互斥访问;
CRITICAL_SECTIONPC_Critical[MAX_BUFFER_NUM];
intBuffer_Critical[MAX_BUFFER_NUM];
//缓冲区声明,用于存放产品;
HANDLEh_Thread[MAX_THREAD_NUM];
//用于存储每个线程句柄的数组;
ThreadInfoThread_Info[MAX_THREAD_NUM];
//线程信息数组;
HANDLEempty_semaphore;
//一个信号量;
HANDLEh_mutex;
//一个互斥量;
DWORDn_Thread=0;
//实际的线程的数目;
DWORDn_Buffer_or_Critical;
//实际的缓冲区或者临界区的数目;
HANDLEh_Semaphore[MAX_THREAD_NUM];
//生产者允许消费者开始消费的信号量;
//生产消费及辅助函数的声明
voidProduce(void*p);
voidConsume(void*p);
boolIfInOtherRequest(int);
intFindProducePositon();
intFindBufferPosition(int);
intmain(void)
//声明所需变量;
DWORDwait_for_all;
ifstreaminFile;
//初始化缓冲区;
for(inti=0;
i<
MAX_BUFFER_NUM;
i++)
Buffer_Critical[i]=-1;
//初始化每个线程的请求队列;
for(intj=0;
j<
MAX_THREAD_NUM;
j++){
for(intk=0;
k<
k++)
Thread_Info[j].thread_request[k]=-1;
Thread_Info[j].n_request=0;
}
//初始化临界区;
for(i=0;
i++)
InitializeCriticalSection(&
PC_Critical[i]);
//打开输入文件,按照规定的格式提取线程等信息;
inFile.open("
test.txt"
);
//从文件中获得实际的缓冲区的数目;
inFile>
>
n_Buffer_or_Critical;
inFile.get();
printf("
输入文件是:
\n"
//回显获得的缓冲区的数目信息;
%d\n"
(int)n_Buffer_or_Critical);
//提取每个线程的信息到相应数据结构中;
while(inFile){
inFile>
Thread_Info[n_Thread].serial;
Thread_Info[n_Thread].entity;
Thread_Info[n_Thread].delay;
charc;
inFile.get(c);
while(c!
='
\n'
&
!
inFile.eof()){
inFile>
Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++];
}
n_Thread++;
}
//回显获得的线程信息,便于确认正确性;
for(j=0;
(int)n_Thread;
intTemp_serial=Thread_Info[j].serial;
charTemp_entity=Thread_Info[j].entity;
doubleTemp_delay=Thread_Info[j].delay;
printf("
\nthread%2d%c%f"
Temp_serial,Temp_entity,Temp_delay);
intTemp_request=Thread_Info[j].n_request;
Temp_request;
printf("
%d"
Thread_Info[j].thread_request[k]);
cout<
<
endl;
\n\n"
//创建在模拟过程中几个必要的信号量
empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical,
"
semaphore_for_empty"
h_mutex=CreateMutex(NULL,FALSE,"
mutex_for_update"
//下面这个循环用线程的ID号来为相应生产线程的产品读写时所
//使用的同步信号量命名;
(int)n_Thread;
j++){
std:
:
stringlp="
semaphore_for_produce_"
;
inttemp=j;
while(temp){
charc=(char)(temp%10);
lp+=c;
temp/=10;
h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,lp.c_str());
//创建生产者和消费者线程;
(int)n_Thread;
i++){
if(Thread_Info[i].entity=='
P'
)
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),
&
(Thread_Info[i]),0,NULL);
else
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),
&
//主程序等待各个线程的动作结束;
wait_for_all=WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1);
\n\nALLProducerandconsumerhavefinishedtheirwork.\n"
Pressanykeytoquit!
_getch();
return0;
}
//确认是否还有对同一产品的消费请求未执行;
boolIfInOtherRequest(intreq)
n_Thread;
for(intj=0;
Thread_Info[i].n_request;
j++)
if(Thread_Info[i].thread_request[j]==req)
returnTRUE;
returnFALSE;
//找出当前可以进行产品生产的空缓冲区位置;
intFindProducePosition()
intEmptyPosition;
for(inti=0;
n_Buffer_or_Critical;
if(Buffer_Critical[i]==-1){
EmptyPosition=i;
//用下面这个特殊值表示本缓冲区正处于被写状态;
Buffer_Critical[i]=-2;
break;
returnEmptyPosition;
//找出当前所需生产者生产的产品的位置;
intFindBufferPosition(intProPos)
intTempPos;
for(inti=0;
if(Buffer_Critical[i]==ProPos){
TempPos=i;
returnTempPos;
//生产者进程
voidProduce(void*p)
//局部变量声明;
DWORDwait_for_semaphore,wait_for_mutex,m_delay;
intm_serial;
//获得本线程的信息;
m_serial=((ThreadInfo*)(p))->
serial;
m_delay=(DWORD)(((ThreadInfo*)(p))->
delay*INTE_PER_SEC);
Sleep(m_delay);
//开始请求生产
Producer%2dsendstheproducerequire.\n"
m_serial);
//确认有空缓冲区可供生产,同时将空位置数empty减1;
用于生产者和消费者的同步;
wait_for_semaphore=WaitForSingleObject(empty_semaphore,-1);
//互斥访问下一个可用于生产的空临界区,实现写写互斥;
wait_for_mutex=WaitForSingleObject(h_mutex,-1);
intProducePos=FindProducePosition();
ReleaseMutex(h_mutex);
//生产者在获得自己的空位置并做上标记后,以下的写操作在生产者之间可以并发;
//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别;
Producer%2dbegintoproduceatposition%2d.\n"
m_serial,ProducePos);
Buffer_Critical[ProducePos]=m_serial;
Producer%2dfinishproducing:
\n"
position[%2d]:
%3d\n"
ProducePos,Buffer_Critical[ProducePos]);
//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;
ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL);
//消费者进程
voidConsume(void*p)
DWORDwait_for_semaphore,m_delay;
intm_serial,m_requestNum;
//消费者的序列号和请求的数目;
intm_thread_request[MAX_THREAD_NUM];
//本消费线程的请求队列;
//提取本线程的信息到本地;
m_requestNum=((ThreadInfo*)(p))->
n_request;
for(inti=0;
m_requestNum;
m_thread_request[i]=((ThreadInfo*)(p))->
thread_request[i];
//循环进行所需产品的消费
i++){
//请求消费下一个产品
Consumer%2drequesttoconsume%2dproduct\n"
m_serial,m_thread_request[i]);
//如果对应生产者没有生产,则等待;
如果生产了,允许的消费者数目-1;
实现了读写同步;
wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1);
//查询所需产品放到缓冲区的号
intBufferPos=FindBufferPosition(m_thread_request[i]);
//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;
//进入临界区后执行消费动作;
并在完成此次请求后,通知另外的消费者本处请求已
//经满足;
同时如果对应的产品使用完毕,就做相应处理;
并给出相应动作的界面提
//示;
该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;
EnterCriticalSection(&
PC_Critical[BufferPos]);
Consumer%2dbegintoconsume%2dproduct\n"
((ThreadInfo*)(p))->
thread_request[i]=-1;
if(!
IfInOtherRequest(m_thread_request[i])){
Buffer_Critical[BufferPos]=-1;
//标记缓冲区为空;
Consumer%2dfinishconsuming%2d:
BufferPos,Buffer_Critical[BufferPos]);
ReleaseSemaphore(empty_semaphore,1,NULL);
}
else{
printf("
Consumer%2dfinishconsumingproduct%2d\n"
//离开临界区
LeaveCriticalSection(&
六、测试结果以及实验总结
1、通过实验进一步了解了基本的进程同步与互斥算法,理解生产者-消费者问题
2、掌握了相关API的使用方法。
3、了解到进程是一个可以拥有资源的基本单位,是一个可以独立调度和分派的基本单位。
而线程是进程中的一个实体,是被系统独立调度和分配的基本单位,故又称为轻权(轻型)进程(LightWeightProcess)。
4、了解到同步对象是指Windows中用于实现同步与互斥的实体,包括信号量(Semaphore)、互斥量(Mutex)、临界区(CriticalSection)和事件(Events)等。
本实验中使用到信号量、互斥量和临界区三个同步对象。
成绩
备注:
实验报告文档的名称:
_实验编号(例如:
三_1、三_2);
实验报告发送到:
os365163.