高中物理内容速记Word文档格式.docx

上传人:b****5 文档编号:20940411 上传时间:2023-01-26 格式:DOCX 页数:17 大小:24.27KB
下载 相关 举报
高中物理内容速记Word文档格式.docx_第1页
第1页 / 共17页
高中物理内容速记Word文档格式.docx_第2页
第2页 / 共17页
高中物理内容速记Word文档格式.docx_第3页
第3页 / 共17页
高中物理内容速记Word文档格式.docx_第4页
第4页 / 共17页
高中物理内容速记Word文档格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

高中物理内容速记Word文档格式.docx

《高中物理内容速记Word文档格式.docx》由会员分享,可在线阅读,更多相关《高中物理内容速记Word文档格式.docx(17页珍藏版)》请在冰豆网上搜索。

高中物理内容速记Word文档格式.docx

(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

机械运动:

一物体相对其它物体的位置变化。

1.参考系:

为研究物体运动假定不动的物体;

又名参照物(参照物不一定静止);

2.质点:

只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:

物体的形状、大小相对所研究对象小的可忽略不计时;

如:

研究地球绕太阳运动,火车从北京到上海;

3.时刻、时间间隔:

在表示时间的数轴上,时刻是一点、时间间隔是一线段;

例:

5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4.位移:

从起点到终点的有相线段,位移是矢量,用有相线段表示;

路程:

描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;

路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5.位移时间图象:

建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;

夹角越大,速度越大;

6.速度是表示质点运动快慢的物理量

(1)物体在某一瞬间的速度较瞬时速度;

物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7.加速度:

是描述物体速度变化快慢的物理量;

(1)加速度的定义式:

a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;

速度为零加速度不一定为零;

加速度为零速度不一定为零;

(4)速度改变等于末速减初速。

加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

匀变速直线运动:

1.速度:

匀变速直线运动中速度和时间的关系:

vt=v0+at

注:

一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2.位移:

匀变速直线运动位移和时间的关系:

s=v0t+1/2at2

注意:

当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3.推论:

2as=vt2-v02

4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:

s2-s1=aT2

5.初速度为零的匀加速直线运动:

前1秒,前2秒,……位移和时间的关系是:

位移之比等于时间的平方比;

第1秒、第2秒……的位移与时间的关系是:

位移之比等于奇数比;

自由落体运动:

只在重力作用下从高处静止下落的物体所作的运动。

1.位移公式:

h=1/2gt2

2.速度公式:

vt=gt

2gh=vt2

牛顿定律:

1.牛顿第一定律(惯性定律):

一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

b.力是该变物体速度的原因;

c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因;

2.惯性:

物体保持匀速直线运动或静止状态的性质叫惯性。

a.一切物体都有惯性;

b.惯性的大小由物体的质量唯一决定;

c.惯性是描述物体运动状态改变难易的物理量;

3.牛顿第二定律:

物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

a.数学表达式:

a=F合/m;

b.加速度随力的产生而产生、变化而变化、消失而消失;

c.当物体所受力的方向和运动方向一致时,物体加速;

当物体所受力的方向和运动方向相反时,物体减速。

d.力的单位牛顿的定义:

使质量为1kg的物体产生1m/s2加速度的力,叫1N;

4.牛顿第三定律:

物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

a.作用力和反作用力同时产生、同时变化、同时消失;

b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

曲线运动:

质点的运动轨迹是曲线的运动

1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

2.质点作曲线运动的条件:

质点所受合外力的方向与其运动方向不在同一条直线上;

且轨迹向其受力方向偏折;

3.曲线运动的特点

曲线运动一定是变速运动;

曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

4.力的作用

力的方向与运动方向一致时,力改变速度的大小;

力的方向与运动方向垂直时,力改变速度的方向;

力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

运动的合成与分解:

1.判断和运动的方法:

物体实际所作的运动是合运动

2.合运动与分运动的等时性:

合运动与各分运动所用时间始终相等;

3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

平抛运动:

被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

1.平抛运动的实质:

物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

3.求解方法:

分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

匀速圆周运动:

质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。

1.线速度的大小等于弧长除以时间:

v=s/t,线速度方向就是该点的切线方向;

2.角速度的大小等于质点转过的角度除以所用时间:

ω=Φ/t

3.角速度、线速度、周期、频率间的关系:

(1)v=2πr/T;

 

(2)ω=2π/T;

(3)V=ωr;

(4)f=1/T;

4.向心力:

(1)定义:

做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

(2)方向:

总是指向圆心,与速度方向垂直。

(3)特点:

①只改变速度方向,不改变速度大小

②是根据作用效果命名的。

(4)计算公式:

F向=mv2/r=mω2r

5.向心加速度:

a向=v2/r=ω2r

开普勒三定律:

1.开普勒第一定律:

所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

说明:

在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

2.开普勒第三定律:

所有行星与太阳的连线在相同的时间内扫过的面积相等;

3.开普勒第三定律:

所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;

公式:

R3/T2=K;

(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

(2)当把行星的轨迹视为圆时,R表示愿的半径;

(3)该公式亦适用与其它天体,如绕地球运动的卫星;

万有引力定律:

自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。

1.计算公式

F:

两个物体之间的引力

G:

万有引力常量

M1:

物体1的质量

M2:

物体2的质量

R:

两个物体之间的距离

依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r 

的单位为米(m),常数G近似地等于

6.67×

10-11 

m2/kg2(牛顿平方米每二次方千克)。

2.解决天体运动问题的思路:

(1)应用万有引力等于向心力;

应用匀速圆周运动的线速度、周期公式;

(2)应用在地球表面的物体万有引力等于重力;

(3)如果要求密度,则用:

m=ρV,V=4πR3/3

功:

功等于力和物体沿力的方向的位移的乘积;

1.计算公式:

w=Fs;

2.推论:

w=Fscosθ, 

θ为力和位移间的夹角;

3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

功率:

功率是表示物体做功快慢的物理量。

1.求平均功率:

P=W/t;

2.求瞬时功率:

p=Fv,当v是平均速度时,可求平均功率;

3.功、功率是标量;

功和能之间的关系:

功是能的转换量度;

做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

动能定理:

合外力做的功等于物体动能的变化。

1.数学表达式:

w合=mvt2/2-mv02/2

2.适用范围:

既可求恒力的功亦可求变力的功;

3.应用动能定理解题的优点:

只考虑物体的初、末态,不管其中间的运动过程;

4.应用动能定理解题的步骤:

(1)对物体进行正确的受力分析,求出合外力及其做的功;

(2)确定物体的初态和末态,表示出初、末态的动能;

(3)应用动能定理建立方程、求解

重力势能:

物体的重力势能等于物体的重量和它的速度的乘积。

1.重力势能用EP来表示;

2.重力势能的数学表达式:

EP=mgh;

3.重力势能是标量,其国际单位是焦耳;

4.重力势能具有相对性:

其大小和所选参考系有关;

5.重力做功与重力势能间的关系

(1)物体被举高,重力做负功,重力势能增加;

(2)物体下落,重力做正功,重力势能减小;

(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

机械能守恒定律:

在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

1.机械能守恒定律的适用条件:

只有重力或弹簧弹力做功。

2.机械能守恒定律的数学表达式:

3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;

4.应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解;

电学:

产生电荷的方式

1.摩擦起电:

(1)正点荷:

用绸子摩擦过的玻璃棒所带电荷;

(2)负电荷:

用毛皮摩擦过的橡胶棒所带电荷;

(3)实质:

电子从一物体转移到另一物体;

2.接触起电:

(1)实质:

电荷从一物体移到另一物体;

(2)两个完全相同的物体相互接触后电荷平分;

(3)电荷的中和:

等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

3.感应起电:

把电荷移近不带电的导体,可以使导体带电;

(1)电荷的基本性质:

同种电荷相互排斥、异种电荷相互吸引;

(2)实质:

使导体的电荷从一部分移到另一部分;

(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

4.电荷的基本性质:

能吸引轻小物体;

电荷守恒定律:

电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;

在转移过程中,电荷的总量不变。

元电荷:

一个电子所带的电荷叫元电荷,用e表示。

1.e=1.6×

10-19c;

2.一个质子所带电荷亦等于元电荷;

3.任何带电物体所带电荷都是元电荷的整数倍;

库仑定律

真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。

电荷间的这种力叫库仑力。

F=kQ1Q2/r2 

(k=9.0×

109N.m2/kg2)

2.库仑定律只适用于点电荷(电荷的体积可以忽略不计)

3.库仑力不是万有引力;

电场:

电场是使点电荷之间产生静电力的一种物质。

1.只要有电荷存在,在电荷周围就一定存在电场;

2.电场的基本性质:

电场对放入其中的电荷(静止、运动)有力的作用;

这种力叫电场力;

3.电场、磁场、重力场都是一种物质

电场强度:

放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度。

1.定义式:

E=F/q;

E是电场强度;

F是电场力;

q是试探电荷;

2.电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

3.该公式适用于一切电场:

点电荷的电场强度公式:

E=kQ/r2

电场的叠加:

在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和。

解题方法:

分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

电场线:

电场线是人们为了形象的描述电场特性而人为假设的线。

1.电场线不是客观存在的线;

2.电场线的形状:

电场线起于正电荷终于负电荷;

用锯木屑观测电场线.DAT

(1)只有一个正电荷:

电场线起于正电荷终于无穷远;

(2)只有一个负电荷:

起于无穷远,终于负电荷;

(3)既有正电荷又有负电荷:

起于正电荷终于负电荷;

3.电场线的作用:

(1)表示电场的强弱:

电场线密则电场强(电场强度大);

电场线疏则电场弱(电场强度小);

(2)表示电场强度的方向:

电场线上某点的切线方向就是该点的场强方向;

(3)电场线的特点:

电场线不是封闭曲线;

同一电场中的电场线不相交;

匀强电场

电场强度的大小、方向处处相同的电场;

匀强电场的电场线平行、且分布均匀。

1.匀强电场的电场线是一簇等间距的平行线;

2.平行板电容器间的电是匀强电场;

电势差

电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。

UAB=WAB/q;

2.电场力作的功与路径无关;

3.电势差又命电压,国际单位是伏特;

电场和功:

电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功。

1.电势具有相对性,和零势面的选择有关;

2.电势是标量,单位是伏特V;

3.电势差和电势间的关系:

UAB=φA-φB;

4.电势沿电场线的方向降低时,电场力要作功,则两点电势差不为零,就不是等势面;

相同电荷在同一等势面的任意位置,电势能相同;

原因:

电荷从一电移到另一点时,电场力不作功,所以电势能不变;

5.电场线总是由电势高的地方指向电势低的地方;

6.等势面的画法:

相另等势面间的距离相等;

电场强度和电势差间的关系

在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

U=Ed;

2.该公式的使适用条件:

仅仅适用于匀强电场;

3.d:

两等势面间的垂直距离;

电容器

储存电荷(电场能)的装置。

1.结构:

由两个彼此绝缘的金属导体组成;

2.最常见的电容器:

平行板电容器;

电容

电容器所带电荷量Q与两电容器量极板间电势差U的比值;

用“C”来表示。

C=Q/U;

2.电容是表示电容器储存电荷本领强弱的物理量;

3.国际单位:

法拉简称:

法,用F表示

4.电容器的电容是电容器的属性,与Q、U无关;

平行板电容器的决定式

平行板电容器的决定式:

C=εs/4πkd;

(其中d为两极板间的垂直距离,又称板间距;

k是静电力常数,k=9.0×

109N.m2/c2;

ε是电介质的介电常数,空气的介电常数最小;

s表示两极板间的正对面积;

1.电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

2.当电容器未与电路相连通时电容器两板所带电荷量不变;

带电粒子的加速

1.条件:

带电粒子运动方向和场强方向垂直,忽略重力;

2.原理:

电场力做的功等于动能的变化:

W=Uq=1/2mvt2-1/2mv02;

当初速度为零时,Uq=1/2mvt2;

4.使带电粒子速度变大的电场又名加速电场;

电流:

电荷的定向移动行成电流。

1.产生电流的条件:

(1)自由电荷;

(2)电场;

2.电流是标量,但有方向:

我们规定:

正电荷定向移动的方向是电流的方向;

在电源外部,电流从电源的正极流向负极;

在电源的内部,电流从负极流向正极;

3.电流的大小:

通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;

(1)数学表达式:

I=Q/t;

(2)电流的国际单位:

安培A

(3)常用单位:

毫安mA、微uA;

(4)1A=103mA=106uA

欧姆定律

导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;

I=U/R;

R=U/I;

3.电阻的国际单位是欧姆,用Ω表示;

1kΩ=103Ω,1MΩ=106Ω;

4.伏安特性曲线

闭合电路

由电源、导线、用电器、电键组成。

1.电动势:

电源的电动势等于电源没接入电路时两极间的电压;

用E表示;

2.外电路:

电源外部的电路叫外电路;

外电路的电阻叫外电阻;

用R表示;

其两端电压叫外电压;

3.内电路:

电源内部的电路叫内电阻,内点路的电阻叫内电阻;

用r表示;

其两端电压叫内电压;

发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;

4.电源的电动势等于内、外电压之和;

E=U内+U外;

U外=RI;

E=(R+r)I

闭合电路的欧姆定律

闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;

I=E/(R+r)

2.当外电路断开时,外电阻无穷大,电源电动势等于路端电压;

就是电源电动势的定义;

3.当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

半导体

导电能力在导体和绝缘体之间;

半导体的电阻随温升越高而减小;

导体

导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

磁场:

1.磁场的基本性质:

磁场对方入其中的磁极、电流有磁场力的作用;

2.磁铁、电流都能能产生磁场;

3.磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4.磁场的方向:

磁场中小磁针北极的指向就是该点磁场的方向;

磁感线

在磁场中画一条有向的曲线,在这些曲线中每点切线方向就是该点的磁场方向。

1.磁感线是人们为了描述磁场而人为假设的线;

2.磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3.磁感线是封闭曲线;

安培定则

1.通电直导线的磁感线:

用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2.环形电流的磁感线:

让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3.通电螺旋管的磁场:

用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

地磁场:

地球本身产生的磁场;

从地磁北极(地理南极)到地磁南极(地理北极)。

磁感应强度:

磁感应强度是描述磁场强弱的物理量。

1.磁感应强度的大小:

在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。

B=F/IL

2.磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3.磁感应强度的国际单位:

特斯拉 

T, 

1T=1N/A。

m

安培力:

磁场对电流的作用力。

1.大小:

在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

2.定义式:

F=BIL(适用于匀强电场、导线很短时)

3.安培力的方向:

左手定则:

伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

磁场和电流:

1.磁铁和电流都可产生磁场;

2.磁场对电流有力的作用;

3.电流和电流之间亦有力的作用;

(1)同向电流产生引力;

(2)异向电流产生斥力;

4.分子电流假说:

所有磁场都是由电流产生的;

磁性材料

能够被强烈磁化的物质叫磁性材料。

(1)软磁材料:

磁化后容易去磁的材料;

软铁;

硅钢;

应用:

制造电磁铁、变压器。

(2)硬磁材料:

磁化后不容易去磁的材料;

碳钢、钨钢、制造:

永久磁铁;

洛伦兹力

磁场对运动电荷的作用力,叫做洛伦兹力。

1.洛仑兹力的方向由左手定则判断:

伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。

(2)洛

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1