圆柱和圆锥的侧面展开图文档格式.docx

上传人:b****6 文档编号:20909168 上传时间:2023-01-26 格式:DOCX 页数:20 大小:357.17KB
下载 相关 举报
圆柱和圆锥的侧面展开图文档格式.docx_第1页
第1页 / 共20页
圆柱和圆锥的侧面展开图文档格式.docx_第2页
第2页 / 共20页
圆柱和圆锥的侧面展开图文档格式.docx_第3页
第3页 / 共20页
圆柱和圆锥的侧面展开图文档格式.docx_第4页
第4页 / 共20页
圆柱和圆锥的侧面展开图文档格式.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

圆柱和圆锥的侧面展开图文档格式.docx

《圆柱和圆锥的侧面展开图文档格式.docx》由会员分享,可在线阅读,更多相关《圆柱和圆锥的侧面展开图文档格式.docx(20页珍藏版)》请在冰豆网上搜索。

圆柱和圆锥的侧面展开图文档格式.docx

B)

C)

D)

分析与解答:

圆柱表面积是两底面积之和加上侧面积.圆柱的侧面展开图是矩形

.因此,圆柱

的侧面积是矩形的面积,即底面周长(

圆柱的高(母线)的积,解之选(C).

典型例题十二

例一个圆锥的底面半径为10cm,母线长20cm,求:

(1)圆锥的表面积;

高;

(3)轴与一条母线所夹的角;

(4)侧面展开图扇形的圆心角.

(1)S圆锥表r2rl100200300(cm2).

(2)如图,OS为圆锥的高,在RtOSA中,OSOA2AS2202

)与

2)圆锥的

102103

cm)

4)

,在RtOSA中,

设侧面展开图扇形的圆心角度数为

,则由2r180l得180,

∴侧面展开图扇形的圆心角为180°

.说明:

本题考查与圆锥有关的计算问题,解题关键是掌握与圆锥有关的性质与公式

典型例题十三

例一个圆锥形工件的轴截面是一个等腰直角三角形,这个直角三角形的斜边长为10厘米,现为这个工件刷油漆,若每平方厘米要2.5克油漆,问至少要油漆多少克(备用数据:

取3.14,2取1.41,结果精确到0.1)

解设圆锥的底面半径为r,母线长为l,表面积为S.

∵圆锥的轴截面是等腰直角三角形,∴由勾股定理得l2l2102.

∴l52(负值已舍).

12

又r105,Sr(lr)3.145(525)189.19(cm2)

则2.5189.19472.98473.0.

答至少要油漆473.0克.

本题考查圆锥表面积计算的应用,易错点是忽视精确度误得472.98克.

(1)如果圆柱底面半径为4cm,它的侧面积为64cm2,那么圆柱的母线长为().

(A)16cm(B)16cm(C)8cm(D)8cm

(2)如果圆柱底面直径为6cm,母线长为10cm,那么圆柱的侧面积为()

2222

(A)30cm(B)60cm(C)90cm(D)120cm

分析圆柱侧面展开图是矩形,

(1)可直接用公式求出母线长为8cm,故选(C),

(2)

中,由直径求出半径是关键,应选(B).

典型例题二

例已知矩形ABCD一边AB=10cm,AD=6cm,求以此矩形为侧面所围成圆柱的表面积.

(1)以AD为圆柱高围成圆柱,则底面圆的半径r=

则圆柱表面积为S602(5)26050.

3

(2)以AB为圆柱高围成圆柱,则底面圆的半径r=

318则圆柱表面积为S602()260.

①圆柱表面积的计算;

②分类思想;

③圆柱各元素的关系和计算.

典型例题五

5

318

则圆柱表面积为S602()260.

例一个圆锥形的零件,经过轴的剖面是一个等腰直角三角形,求它的侧面展开图的中心

角.

圆锥展开图的应用,圆锥的侧面展开图是一个扇形,这个扇形的半径等于圆锥母线的长,扇形的弧长等于圆锥底面周长,千万不要借把圆锥底面的半径当作扇形的半径.

典型例题七

例一个圆锥的侧面展开图是半径为18cm,圆心角为240°

的扇形,求这个圆锥的轴截

面积.

24018解:

∵扇形的半径为18cm,圆心角为240°

,∴扇形的弧长L=24

24∵扇形弧长等于底面圆周长,∴圆锥的母线长为18cm,底面半径=12cm

∴圆锥的高为18212265(cm),

∴圆锥的轴截面积S=2465725(cm2)

巩固圆锥的各元素之间的关系,弧长公式和解直角三角形等知识的应用.

典型例题六

例已知一个圆柱的轴截面是一个面积为16cm2的正方形,求它们侧面积.

∵圆柱的轴截面是正方形,且面积为16cm2

∴圆柱的高为4cm,圆柱底面直径也是4cm即底面半径为2cm.∴圆柱的侧面积=2π×

4=16πcm2.

此题为基础题.应用圆柱轴截面的特征,圆柱各元素的关系,侧面积计算.

典型例题一

圆柱表面积是两底面积之和加上侧面积.圆柱的侧面展开图是矩形.因此,圆柱

的侧面积是矩形的面积,即底面周长()与圆柱的高(母线)的积,解之选(C).

2∴圆锥的高为18212265(cm),

1∴圆锥的轴截面积S=2465725(cm2)

典型例题四

2cm.

典型例题十一

已知

斜边

为轴旋转一周得一表面积

的圆锥,则这个圆锥的高等于

圆锥的表面积是底面积与圆锥侧面积之和.圆锥的侧面展开图是扇形.圆锥的

侧面积是扇形的面积,即等于底面周长×

母线长的一半.

此题在分析中要结合图形(如图)弄清欲求圆锥的高即为

的长,关键在于求底面半径

即可

求出

,解之得高=12cm.

例已知一个三角形的边长分别为3cm、4cm、5cm,求以一边所在的直线为轴旋转一周形成的几何体的全面积.

略解:

如图,在△ABC中,AB=5,AC=4,BC=3,

∵AB2=AC2+BC2,∴∠C=90

1)当以AC所在的直线为轴旋转一周时,

形成的几何体是以底面半

径为3,母线长为5的圆锥.

S全S底S侧3(53)24(cm2).

(2)当以BC所在的直线为轴旋转一周时,形成的几何体是以底面半径为4,母线长为5的圆锥.

S全S底S侧4(54)36(cm2).

(3)当以AB所在的直线为轴旋转一周时,两个圆锥的侧组成的几何体,母线长分别为

形成的几何体是同底面的

4、3.

3412

圆锥的底面半径=3412

55

S全S侧1S侧2

12384

cm2).

①分类思想;

②圆锥的侧面积和表面积.

例一个圆锥的高是10㎝,侧面展开图是半圆,求圆锥的侧面积

分析:

圆锥的高、母线和底面半径构成直角三角形即RtSOA,且SO10,SAl,OAr,关键找出l与r的关系,又其侧面展开图是

2l

半圆,可得关系2l,,即l2r.

设圆锥底面半径r,扇形弧长为C,母线长为l,

由题意得C2l,又C2r.

2l2l,得l2r

在RtSOA中,l2r2102

由①、②得:

r103cm,l203cm.22

Srl

103320332030(cm2)

333

例一个圆锥的底面半径为10cm,母线长20cm,求:

(2)圆锥的高;

(2)如图,OS为圆锥的高,在RtOSA中,OSOA2AS2202102103

cm).

(3)设轴与一条母线所夹的角为,在RtOSA中,

AS1

sin,30.

OA2

(4)设侧面展开图扇形的圆心角度数为,则由2rl得180,

180∴侧面展开图扇形的圆心角为180°

本题考查与圆锥有关的计算问题,解题关键是掌握与圆锥有关的性质与公式.

例一个圆锥形工件的轴截面是一个等腰直角三角形,这个直角三角形的斜边长为10

厘米,现为这个工件刷油漆,若每平方厘米要2.5克油漆,问至少要油漆多少克(备用数据:

又r1105,Sr(lr)3.145(525)189.19(cm2)

2则2.5189.19472.98473.0.答至少要油漆473.0克.说明:

例圆锥的轴截面是等腰PAB,EGPAPB3,AB2,M是AB上一点,且

典型例题三

(A)30cm2(B)60cm2(C)90cm2(D)120cm2

中,由直径求出半径是关键,应选(B)

填空题

1.用边长分别为8和6的矩形卷成圆柱,则圆柱的底面面积是.

2.如果圆锥的高为8㎝,圆锥的底面半径为6㎝,那么它的侧面展开图的面积为

3.已知矩形ABCD,一边AB=30㎝,另一边AD=9㎝,以直线AB为轴旋转一周所得到的

圆柱的表面积为cm2(结果用表示)

4.已知一矩形的长为AB=6,宽AD=4,若以它垂直于一组对边的对称轴为轴旋转180°

得到的立体图形的表面积为.

5.用一个圆心角为120°

,半径为4的扇形做一个圆锥,那么这个圆锥的底面周长为.

6.用过轴线的平面把一个圆锥剖开得到一个等腰直角三角形,则这个圆锥的底面半径是高的倍,母线是高的倍.

7.圆柱的高与底面直径相等,如果它的侧面积为S,则底面积是

8.矩形ABCD的边AB4cm,AD2cm,以直线AD为轴旋转一周,所得的圆柱的侧

9.底面直径是10cm,高是12cm的圆锥,沿它的轴剖开得到一个三角形,该三角形

的面积是cm2

10.一个圆锥形零件的高为10cm,若经过轴的剖面是一个等腰直角三角形,则这个圆锥的

底面半径为cm,母线长为cm,侧面积为cm2,表面积为cm2

15

11.若一圆锥的侧面积为,母线长为3,则侧面展开图的圆心角为.

4

212.若一个圆锥的母线长是5cm,底面半径是3cm,则它的侧面展开图的面积是cm2.

13.一位同学制作一圆锥模型,这个模型的侧面是用一个半径为9cm,圆心角为240°

的扇

形铁皮制作,再用一块圆铁片做底,那么这块圆铁片的半径为.

14.已知圆柱底面半径为,高为10,则圆柱侧面积是.

参考答案:

8S

1.16和9;

2.60;

3.702;

4.42或32;

5.;

6.1,2.7.8.16

34

9.等腰6010.10cm,102cm,1002cm2100(21)cm211.150.12.15

13.6cm14.40.

选择题

1.在矩形ABCD中,ABCA,分别以直线AB,AC为轴旋转一周得两个圆柱,这两

个圆柱的底面积与侧面积分别有什么关系?

()

A.底面积相等,侧面积也相等B.底面积不等,侧面积相等

C.底面积相等,侧面积不相等D.底面积不等,侧面积也不等

2.如图,已知圆锥的高为4cm,底面半径为3cm,则圆锥侧面展开图的面积为()

3.一个圆锥的高为

103cm,侧面展开后是一个半圆,则圆锥的表面积是()

A.200cm2

B.300cm2

C.400cm

D.360cm2

4.在ABC中,

C90,BCa,ACb(ab),分别以AC,BC所在的直线

为轴旋转一周,所得的圆锥的侧面积依次记为S1,S2,则S1和S2的大小关系为()

A.S1S2B.S1S2C.S1S2D.以上情况都有可能

5.一个圆柱的侧面展开图是正方形,那么它的侧面积和底面积的比是()

(A)1(B)(C)4(D)4

6.在△ABC中,AB3,AC4,A90,把Rt△ABC绕直线AC旋转一周得到一个圆锥,其表面积为S1;

把Rt△ABC绕直线AB一周得到另一个圆锥,其表面积为S2,则

S1:

S2()

(A)2:

3(B)3:

4(C)4:

9(D)39:

56

7.已知一个扇形的半径为60厘米,圆心角为150°

,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()

(A)12.5厘米(B)25厘米(C)50厘米(D)75厘米

8.一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是()

(A)60°

(B)90°

(C)120°

(D)180°

9.如果圆柱的底面直径为4,母线长为2,那么圆柱的侧面展开图的面积等于()

(A)8(B)4(C)16(D)8

10.一张矩形纸片,两边长分别为2cm和4cm,以它的一边所在直线为轴旋转一周,所得

的圆柱的表面积一定是()

(A)24cm2或48cm2

(B)32cm2或20cm2

22

(C)24cm2或32cm2

(D)20cm2或48cm2

参考答案:

1.B2.B3.B4.A5.C;

6.A;

7.B;

8.D.9.A10.A.

解答题

1.已知圆柱的底面半径为2cm,圆柱的高为3cm.求它的侧面积.

2.已知圆柱的底面直径为4cm,圆柱的高为5cm.求它的全面积.

3.已知圆拄的高为4cm,侧面积为40πcm2.求它的全面积.

4.已知矩形ABCD中,AB=4cm,BC=2cm,以AB为轴旋转一周,补上底面,求所成的圆柱的全面积;

再以BC为轴旋转一周,补上底面.求所成的圆柱的全面积.比较一下两个圆柱全面积的大小.

5.已知圆锥的母线长为6cm;

底面半径为2cm.求它侧面展开图的圆心角的度数.6.已知扇形的半径为4cm,圆心角为120°

,用它做成一个圆锥.求圆锥的底面面积.7.已知圆锥的高为6cm,底面半径为8cm.求这个圆锥的侧面积.

8.在如图所示的矩形ABCD中,AB2cm,BC3cm,MN是它的一条对称轴。

以AB为轴旋转一周得一圆柱,再以MN为轴,旋A转半周又得一圆柱,分别求出这两个圆柱的表面积。

9.已知矩形的一边是另一边的两倍,以矩形长边的垂直平分线为轴,将矩形旋转180,得

一侧面积32cm2的圆柱,求这个矩形的边长。

10.已知菱形的周长为20厘米,有一角为60,若以较长的对角线为轴把菱形旋转一周,求所成的旋转体的表面积。

11.已知圆锥的底面半径为8cm,圆锥的侧面展开图的圆心角为150,求圆锥母线的长。

3

12.一个圆锥的高为33厘米,侧面展开图是半圆,求:

母线与底面半径之比;

锥角的大小及圆锥的表面积.

13.已知圆柱的侧面展开图是一个边长为a的正方形,求这个圆柱的底面半径与圆柱的母线

之比.

14.圆锥的母线与底面直径相等,求这个圆锥侧面展开图确定的扇形的弧所对的圆心角.

15.如图,已知圆锥的母线AB6,底面半径r2,求圆锥的侧面展开图的扇形圆心角

参考答案与提示:

1.12πcm2.2.28πcm2.3.50πcm2.4.(8+8/π)cm2(8+2/π)cm2第一个表面积

大.5.120°

.6.64π/9cm2.7.80πcm2.8.30cm2;

10.5cm29.4cm、8cm10.25cm211.20cm

12.如图所示:

AO为圆锥的高,经过AO的剖面是等腰△ABC,则AB为锥面的母线l,BO为底面半径r.

13.圆柱的侧面展开图是一个边长为a的正方形,

∴圆柱的母线长为a,底面圆的周长为a,则底面圆的半径为.

2a

∴圆柱的底面圆的半径与圆柱的母线之比为:

:

a1:

2.

214.设圆的母线长为a,则底面半径为a.

∴展开图确定的扇形的弧长为a,扇形所在圆的半径为a,设弧所对的圆心角为

∴180∴扇形的弧所对的圆心角为180°

15.设扇形半径为R,弧长为l,则RAB6,l2r4

探究活动

在一服装厂里有大量形状为等腰直角三角形的边角布料(如图).现找出其中的一种,测

得∠C=90°

,AC=BC=4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在△ABC的边上,且扇形的弧与△ABC的其他边相切.请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径).

r4424

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1