染色体与DNA.docx

上传人:b****2 文档编号:2083643 上传时间:2022-10-26 格式:DOCX 页数:43 大小:54.38KB
下载 相关 举报
染色体与DNA.docx_第1页
第1页 / 共43页
染色体与DNA.docx_第2页
第2页 / 共43页
染色体与DNA.docx_第3页
第3页 / 共43页
染色体与DNA.docx_第4页
第4页 / 共43页
染色体与DNA.docx_第5页
第5页 / 共43页
点击查看更多>>
下载资源
资源描述

染色体与DNA.docx

《染色体与DNA.docx》由会员分享,可在线阅读,更多相关《染色体与DNA.docx(43页珍藏版)》请在冰豆网上搜索。

染色体与DNA.docx

染色体与DNA

第二章染色体与DNA

染色体(chromosome)是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。

真核生物的染色体在细胞生活周期的大部分时间里都是以染色质(chromatin)的形式存在的。

染色质是一种纤维状结构,叫做染色质丝,它是由最基本的单位—核小体(nucleosome)成串排列而成的。

原核生物(prokaryote):

DNA形成一系列的环状附着在非组蛋白上形成类核。

染色体由DNA和蛋白质组成。

蛋白质由非组蛋白和组蛋白(H1,H2A,H2B,H3,H4)

DNA和组蛋白构成核小体。

组蛋白的一般特性:

P24

①进化上的保守性

②无组织特异性

③肽链氨基酸分布的不对称性:

碱性氨基酸集中分布在N端的半条链上。

④组蛋白的可修饰性:

甲基化、乙基化、磷酸化及ADP核糖基化等。

⑤H5组蛋白的特殊性:

富含赖氨酸(24%)(鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)

组蛋白的可修饰性

在细胞周期特定时间可发生甲基化、乙酰化、磷酸化和ADP核糖基化等。

H3、H4修饰作用较普遍,H2B有乙酰化作用、H1有磷酸化作用。

所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。

这些组蛋白修饰的意义:

一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。

2、DNA

1)DNA的变性和复性

■变性(Denaturation)DNA双链的氢键断裂,最后完全变成单链的过程称为变性。

■增色效应(Hyperchromaticeffect)在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某一温度时骤然上升,称为增色效应。

■融解温度(Meltingtemperature,Tm)变性过程紫外线吸收值增加的中点称为融解温度。

生理条件下为85-95℃

影响因素:

G+C含量,pH值,离子强度,尿素,甲酰胺等

■复性(Renaturation)热变性的DNA缓慢冷却,单链恢复成双链。

■减色效应(Hypochromaticeffect)随着DNA的复性,260nm紫外线吸收值降低的现象。

2)C值反常现象(C-valueparadox)C值是一种生物的单倍体基因组DNA的总量。

真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。

(四)核小体(nucleosome):

用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核[(H2A、H2B、H3、H4)*2的八聚体】构成的。

1、原核生物基因组结构特点

●基因组很小,大多只有一条染色体

●结构简炼

●存在转录单元(trnascriptionaloperon)

●多顺反子(polycistron)

重叠基因由基因内基因、部分重叠基因、一个碱基重叠组成。

2、真核生物基因组结构特点

●真核基因组结构庞大3×109bp、染色质、核膜

●单顺反子

●基因不连续性断裂基因(interruptedgene)、内含子(intron)、外显子(exon)

●非编码区较多多于编码序列(9:

1)

●含有大量重复序列

■不重复序列/单一序列:

在基因组中有一个或几个拷贝。

真核生物的大多数基因在单倍体中都是单拷贝的。

如:

蛋清蛋白、血红蛋白等功能:

主要是编码蛋白质。

■中度重复序列:

在基因组中的拷贝数为101~104。

如:

rRNA、tRNA

一般是不编码蛋白质的序列,在调控基因表达中起重要作用

■高度重复序列:

拷贝数达到几百个到几百万个。

●卫星DNA:

A·T含量很高的简单高度重复序列。

1、DNA的一级结构:

指4种脱氧核苷酸的连接及其排列顺序,DNA序列是这一概念的简称。

碱基序列

2)特征:

●双链反向平行配对而成

●脱氧核糖和磷酸交替连接,构成DNA骨架,碱基排在内侧

●内侧碱基通过氢键互补形成碱基对(A:

T,C:

G)。

2、DNA的二级结构:

指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。

2)分类:

右手螺旋:

A-DNA,B-DNA

左手螺旋:

Z-DNA

3、DNA的高级结构:

指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。

是一种比双螺旋更高层次的空间构象。

2)主要形式:

超螺旋结构(正超螺旋和负超螺旋)

(一)DNA的半保留复制(semi-nservativereplication)

1、定义:

由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。

3、DNA半保留复制的生物学意义:

DNA的半保留复制表明DNA在代谢上的稳定性,保证亲代的遗传信息稳定地传递给后代。

(二)与DNA复制有关的物质

1、原料:

四种脱氧核苷三磷酸(dATP、dGTP、dCTP、dTTP)

2、模板:

以DNA的两条链为模板链,合成子代DNA

3、引物:

DNA的合成需要一段RNA链作为引物

4、引物合成酶(引发酶):

此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。

实质是以DNA为模板的RNA聚合酶。

5、DNA聚合酶:

以DNA为模板的DNA合成酶

●以四种脱氧核苷酸三磷酸为底物

●反应需要有模板的指导

●反应需要有3-OH存在

●DNA链的合成方向为53

性质

聚合酶Ⅰ

聚合酶Ⅱ

聚合酶Ⅲ

3'5'外切活性

+

+

+

5'3'外切活性

+

-

-

5'3'聚合活性

+中

+很低

+很高

新生链合成

-

-

+

聚合酶Ⅰ主要是对DNA损伤的修复;以及在DNA复制时切除RNA引物并填补其留下的空隙。

聚合酶Ⅱ修复紫外光引起的DNA损伤

聚合酶ⅢDNA复制的主要聚合酶,还具有3→5’外切酶的校对功能,提高DNA复制的保真性

6、DNA连接酶(1967年发现):

若双链DNA中一条链有切口,一端是3’-OH,另一端是5’-磷酸基,连接酶可催化这两端形成磷酸二酯键,而使切口连接。

但是它不能将两条游离的DNA单链连接起来

DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用

7、DNA拓扑异构酶(DNATopisomerase):

拓扑异构酶І:

使DNA一条链发生断裂和再连接,作用是松解负超螺旋。

主要集中在活性转录区,同转录有关。

例:

大肠杆菌中的ε蛋白

拓扑异构酶Ⅱ:

该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。

同复制有关。

例:

大肠杆菌中的DNA旋转酶

8、DNA解螺旋酶/解链酶(DNAhelicase):

通过水解ATP获得能量来解开双链DNA。

E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。

rep蛋白沿3’5’移动,而解螺旋酶I、II、III沿5’3’移动。

9、单链结合蛋白(SSBP-single-strandbindingprotein):

稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。

(三)DNA的复制过程(大肠杆菌为例)

⏹双链的解开

⏹RNA引物的合成

⏹DNA链的延伸

⏹切除RNA引物,填补缺口,连接相邻的DNA片段

1、双链的解开------ftju制有特定的起始位点,叫做复制原点。

ori(或o)、富含A、T的区段。

从复制原点到终点,组成一个复制单位,叫复制子

复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉

双链解开、复制起始P44

大约20个DnaA蛋白在ATP的作用下与oriC处的4个9bp保守序列相结合

在HU蛋白和ATP的共同作用下,Dna复制起始复合物使3个13bp直接重复序列变性,形成开链

解链酶六体分别与单链DNA相结合(需DnaC帮助),进一步解开DNA双链

2、RNA引物的合成

DnaB蛋白活化引物合成酶,引发RNA引物的合成。

引物长度约为几个至10个核苷酸,

3、DNA链的延伸

DNA的半不连续复制(semi-discontinuousreplication):

DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。

在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链为前导链;合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链为滞后链。

在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成53的多个短片段,这些不连续的小片段称为冈崎片段。

4、切除RNA引物,填补缺口,连接相邻的DNA片段(复制终止)

当复制叉遇到约22个碱基的重复性终止子序列(Ter)时,Ter-Tus蛋白复合物能使DnaB不再将DNA解链,阻挡复制叉继续前移。

P47

在DNA聚合酶Ⅰ催化下切除RNA引物;留下的空隙由DNA聚合酶Ⅰ催化合成一段DNA填补上;在DNA连接酶作用下,连接相邻的DNA链

(四)复制的几种主要方式P42

1、双链环状、θ型复制、双向等速

2、滚环型:

(1)模板链和新合成的链分开;

(2)不需RNA引物,在正链3‘-OH上延伸

(3)只有一个复制叉;

3、D环复制---单向复制的特殊方式如:

动物线粒体DNA

(五)真核生物中DNA的复制特点

1、真核生物每条染色体上有多个复制起点,多复制子(约150bp左右);

2、复制叉移动的速度较慢(约50bp/秒),仅为原核生物的1/10。

3、真核生物染色体在全部复制完之前,各个起始点不再重新开始DNA复制;真核生物快速生长时,往往采用更多的复制起点。

4、真核生物有多种DNA聚合酶。

5、真核生物DNA复制过程中的引物及冈崎片段的长度均小于原核生物。

(真核冈崎片段长约100-200bp,原核冈崎片段长约1000-2000bp。

(六)原核和真核生物DNA的复制特点比较

1复制起点(ori):

原核一个,真核多个;

2复制子:

原核一个,真核多个;

3复制子长度:

原核长;真核短;

4复制叉:

原核多个;真核多个;

5复制移动速度:

原核较快;真核较慢;

6真核生物染色体在全部完成复制前,各起始点的DNA复制不能再开始。

而在快速生长的原核生物中,复制起点上可以连续开始新的DNA复制。

7原核生物染色体的复制与细胞分裂同步,可以多次复制;真核生物染色体的复制发生在S期,是细胞分类的特定时期,而且仅此一次。

四、DNA的修复

DNA修复系统

功能

错配修复

恢复错配

碱基切除修复

切除突变的碱基

核甘酸切除修复

修复被破坏的DNA

DNA直接修复

SOS系统

修复嘧啶二体或甲基化DNA

DNA的修复,导致变异

1、错配修复(mismatchrepair)

●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化

●甲基化紧随在DNA复制之后进行(几秒种后至几分钟内)

●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基

2、碱基切除修复excisionrepair

所有细胞中都带有不同类型、能识别受损核苷酸位点的糖苷水解酶,它能特意切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。

一些碱基在自发或诱变下会发生脱酰胺,然后改变配对性质,造成氨基转换突变

*腺嘌呤变为次黄嘌呤与胞嘧啶配对

*鸟嘌呤变为黄嘌呤与胞嘧啶配对

*胞嘧啶变为尿嘧啶与腺嘌呤配对

3、核苷酸切除修复

1)通过特异的核酸内切酶识别损伤部位

2)由酶的复合物在损伤的两边切除几

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工程科技 > 兵器核科学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1