Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx
《Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx(31页珍藏版)》请在冰豆网上搜索。
RitaL.Sousa,HerbertH.Einstein⇑
Dept.ofCivilandEnvironmentalEngineering,MassachusettsInstituteofTechnology,Cambridge,USA
articleinfo
Articlehistory:
Received16December2010
Receivedinrevisedform15July2011
Accepted17July2011
Availableonline27August2011
Keywords:
RiskTunneling
BayesianNetworks
abstract
Thispaperpresentsamethodologytosystematicallyassessandmanagetherisksassociatedwithtunnelconstruction.Themethodologyconsistsofcombiningageologicpredictionmodelthatallowsonetopre-dictgeologyaheadofthetunnelconstruction,withaconstructionstrategydecisionmodelthatallowsonetochooseamongstdifferentconstructionstrategiestheonethatleadstominimumrisk.Thismodelusedtunnelboringmachineperformancedatatorelatetoandpredictgeology.BothmodelsarebasedonBayesianNetworksbecauseoftheirabilitytocombinedomainknowledgewithdata,encodedependen-ciesamongvariables,andtheirabilitytolearncausalrelationships.Thecombinedgeologicprediction–constructionstrategydecisionmodelwasappliedtoacase,thePortoMetro,inPortugal.Theresultsofthegeologicpredictionmodelwereingoodagreementwiththeobservedgeology,andtheresultsoftheconstructionstrategydecisionsupportmodelwereingoodagreementwiththeconstructionmethodsused.Verysignificantistheabilityofthemodeltopredictchangesingeologyandconsequentlyrequiredchangesinconstructionstrategy.Thisriskassessmentmethodologyprovidesapowerfultoolwithwhichplannersandengineerscansystematicallyassessandmitigatetheinherentrisksassociatedwithtunnel
construction.
2011ElsevierLtd.Allrightsreserved.
1.Introduction
Thereisanintrinsicriskassociatedwithtunnelconstructionbecauseofthelimitedaprioriknowledgeoftheexistingsubsur-faceconditions.Althoughthemajorityoftunnelconstructionpro-jectshavebeencompletedsafelytherehavebeenseveralincidentsinvarioustunnelingprojectsthathaveresultedindelays,costoverruns,andinafewcasesmoresignificantconsequencessuchasinjuryandlossoflife.Itisthereforeimportanttosystematicallyassessandmanagetherisksassociatedwithtunnelconstruction.Adetaileddatabaseofaccidentsthatoccurredduringtunnelcon-structionwascreatedbySousa(2010).Thedatabasecontains
204casesallaroundtheworldwithdifferentconstructionmeth-odsanddifferenttypesofaccidents.Theaccidentcaseswereobtainedfromthetechnicalliterature,newspapersandcorrespon-dencewithexpertsinthetunnelingdomain.
Knowledgerepresentationsystems(orknowledgebasedsys-tems)anddecisionanalysistechniqueswerebothdevelopedtofacilitateandimprovethedecisionmakingprocess.KnowledgerepresentationsystemsusevariouscomputationaltechniquesofAI(artificialintelligence)forrepresentationofhumanknowledge
⇑Correspondingauthor.Address:
70MassachusettsAve.,Room1-342,Cam-bridgeMA02139,USA.Tel.:
+16172533598;
fax:
+16172536044.
E-mailaddress:
einstein@mit.edu(H.H.Einstein).
andinference.Decisionanalysisusesdecisiontheoryprinciplessupplementedbyjudgmentpsychology(Henrion,1991).Bothemergedfromresearchdoneinthe1940sregardingdevelopmentoftechniquesforproblemsolvinganddecisionmaking.JohnvonNeumannandOscarMorgensten,whointroducedgametheoryin
‘‘GamesandEconomicBehavior’’(1944),hadatremendousimpactonresearchindecisiontheory.
Althoughthetwofieldshavecommonroots,sincethentheyhavetakendifferentpaths.Morerecentlytherehasbeenaresur-genceofinterestbymanyAIresearchersintheapplicationofprob-abilitytheory,decisiontheoryandanalysistoseveralproblemsinAI,resultinginthedevelopmentofBayesianNetworksandinflu-encediagrams,anextensionofBayesianNetworksdesignedtoincludedecisionvariablesandutilities.The1960ssawtheemer-genceofdecisionanalysiswiththeuseofsubjectiveexpectedutil-ityandBayesianstatistics.HowardRaiffa,RobertSchlaifer,andJohnPrattatHarvard,andRonaldHowardatStanfordemergedasleadersintheseareas.ForinstanceRaiffaandSchlaifer’sAppliedStatisticalDecisionTheory(1961)providedadetailedmathemati-caltreatmentofdecisionanalysisfocusingprimarilyonBayesianstatisticalmodels.Prattetal.(1964)developedbasicdecisionanal-ysis.whileEskesenetal.(2004)andHartfordandBaecher(2004)providegoodsummariesonthedifferenttechniques(faulttrees,decisiontrees,etc.)thatcanbeusedtoassessandmanageriskintunneling.
0886-7798/$-seefrontmatter2011ElsevierLtd.Allrightsreserved.doi:
10.1016/j.tust.2011.07.003
Variouscommercialandresearchsoftwareforriskanalysisdur-ingtunnelconstructionhavebeendevelopedovertheyears,themostimportantofwhichistheDAT(DecisionAidsforTunneling),developedatMITincollaborationwithEPFL(EcolePolytechniqueFé
dé
raledeLausanne).TheDATarebasedonaninteractivepro-gramthatusesprobabilisticmodelingoftheconstructionprocesstoanalyzetheeffectsofgeotechnicaluncertaintiesandconstruc-tionuncertaintiesonconstructioncostsandtime.(Dudtetal.,
2000;
Einstein,2002)However,themajorityofexistingriskanaly-sissystems,includingtheDAT,dealonlywiththeeffectsofran-dom(‘‘common’’)geologicalandconstructionuncertaintiesontimeandcostofconstruction.Thereareothersourcesofrisks,notconsideredinthesesystems,whicharerelatedtospecificgeo-technicalscenariosthatcanhavesubstantialconsequencesonthetunnelprocess,eveniftheirprobabilityofoccurrenceislow.
Thispaperattemptstoaddresstheissueofspecificgeotechnicalriskbyfirstdevelopingamethodologythatallowsonetoidentifymajorsourcesofgeotechnicalrisks,eventhosewithlowprobabil-ity,inthecontextofaparticularprojectandthenperformingaquantitativeriskanalysistoidentifythe‘‘optimal’’constructionstrategies,where‘‘optimal’’referstominimumrisk.Forthatpur-poseadecisionsupportsystemframeworkfordeterminingthe
‘‘optimal’’(minimumrisk)constructionmethodforagiventunnel
Fig.1.BayesianNetworkexample.
therelationsbetweenvariables.Inthisexamplethearrowfrom
CtoB2meansthatChasadirectinfluenceonB2.
Specifically,aBayesianNetworkisacompactandgraphicalrep-resentationofajointdistribution,basedonsomesimplifyingassumptionsthatsomevariablesareconditionallyindependentofothers.AsaresultthejointprobabilityofaBayesianNetworkoverthevariablesU={X1,...,Xn},representedbythechainrulecanbesimplifiedfrom:
n
Y
alignmentwasdeveloped.Thedecisionsupportsystemconsistsoftwomodels:
ageologicpredictionmodel,andaconstructionstrat-egydecisionmodel.BothmodelsarebasedontheBayesianNet-
Pð
UÞ
¼
i
to
Xijx1;
...;
xi1Þ
worktechnique,andwhencombinedallowonetodeterminethe
QnPð
X¼
xjparentsð
XÞ
Þ
where‘‘parents(X)’’isthe
‘optimal’tunnelconstructionstrategies.Thedecisionmodelcon-
parentsetof
iiii
Xi.
tainsanupdatingcomponent,byincludinginformationfromthe
excavatedtunnelsections.Thissystemwasimplementedinarealtunnelproject,thePortoMetroinPortugal.
2.BackgroundonBayesianNetworks
BayesianNetworksaregraphicalrepresentationsofknowledgeforreasoningunderuncertainty.Theycanbeusedatanystageofariskanalysis,andmaysubstitutebothfaulttreesandeventtreesinlogicaltreeanalysis.Whilecommoncauseormoregeneraldepen-dencyphenomenaposesignificantcomplicationsinclassicalfaulttreeanalysis,thisisnotthecasewithBayesianNetworks.Theyareinfactdesignedtofacilitatethemodelingofsuchdependen-cies.Becauseofwhathasbeenstated,BayesianNetworksprovideagoodtoolfordecisionanalysis,includingprioranalysis,posterioranalysisandpre-posterioranalysis.Furthermore,theycanbeex-tendedtoinfluencediagrams,includingdecisionandutilitynodesinordertoexplicitlymodeladecisionproblem.
ABayesianNetworkisaconcisegraphicalrepresentationofthe
jointprobabilityofthedomainthatisbeingrepresentedbythe
ItisthispropertythatmakesBayesianNetworksaverypower-fultoolforrepresentingdomainsunderuncertainty,allowingonetostoreandcomputethejointandmarginaldistributionsmoreefficiently.
InordertoobtainresultsfromBayesianNetworksonedoesinference.ThisconsistsofcomputinganswerstoqueriesmadetotheBayesianNetwork.Thetwomostcommontypesofqueriesare:
–Aprioriprobabilitydistributionofavariable
AÞ
X...XPð
X1;
Xk;
AÞ
ð
1Þ
X1Xk
whereAisthequery-variableandX1toXkaretheremainingvariablesofthenetwork.Thistypeofquerycanbeusedduringthedesignphaseofatunnelforexampletoassesstheproba-bilityoffailureunderdesignconditions(geology,hydrology,etc.).
–Posteriordistributionofvariablesgivenevidence
(observations)
A;
eÞ
randomvariables,consistingof(RusselandNorvig,2003):