Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx

上传人:b****6 文档编号:20819412 上传时间:2023-01-25 格式:DOCX 页数:31 大小:3.01MB
下载 相关 举报
Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx_第1页
第1页 / 共31页
Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx_第2页
第2页 / 共31页
Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx_第3页
第3页 / 共31页
Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx_第4页
第4页 / 共31页
Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx

《Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx》由会员分享,可在线阅读,更多相关《Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx(31页珍藏版)》请在冰豆网上搜索。

Risk analysis during tunnel construction using Bayesian NetworksPorto Mctro case studyWord格式文档下载.docx

RitaL.Sousa,HerbertH.Einstein⇑

Dept.ofCivilandEnvironmentalEngineering,MassachusettsInstituteofTechnology,Cambridge,USA

articleinfo

Articlehistory:

Received16December2010

Receivedinrevisedform15July2011

Accepted17July2011

Availableonline27August2011

Keywords:

RiskTunneling

BayesianNetworks

abstract

Thispaperpresentsamethodologytosystematicallyassessandmanagetherisksassociatedwithtunnelconstruction.Themethodologyconsistsofcombiningageologicpredictionmodelthatallowsonetopre-dictgeologyaheadofthetunnelconstruction,withaconstructionstrategydecisionmodelthatallowsonetochooseamongstdifferentconstructionstrategiestheonethatleadstominimumrisk.Thismodelusedtunnelboringmachineperformancedatatorelatetoandpredictgeology.BothmodelsarebasedonBayesianNetworksbecauseoftheirabilitytocombinedomainknowledgewithdata,encodedependen-ciesamongvariables,andtheirabilitytolearncausalrelationships.Thecombinedgeologicprediction–constructionstrategydecisionmodelwasappliedtoacase,thePortoMetro,inPortugal.Theresultsofthegeologicpredictionmodelwereingoodagreementwiththeobservedgeology,andtheresultsoftheconstructionstrategydecisionsupportmodelwereingoodagreementwiththeconstructionmethodsused.Verysignificantistheabilityofthemodeltopredictchangesingeologyandconsequentlyrequiredchangesinconstructionstrategy.Thisriskassessmentmethodologyprovidesapowerfultoolwithwhichplannersandengineerscansystematicallyassessandmitigatetheinherentrisksassociatedwithtunnel

construction.

2011ElsevierLtd.Allrightsreserved.

1.Introduction

Thereisanintrinsicriskassociatedwithtunnelconstructionbecauseofthelimitedaprioriknowledgeoftheexistingsubsur-faceconditions.Althoughthemajorityoftunnelconstructionpro-jectshavebeencompletedsafelytherehavebeenseveralincidentsinvarioustunnelingprojectsthathaveresultedindelays,costoverruns,andinafewcasesmoresignificantconsequencessuchasinjuryandlossoflife.Itisthereforeimportanttosystematicallyassessandmanagetherisksassociatedwithtunnelconstruction.Adetaileddatabaseofaccidentsthatoccurredduringtunnelcon-structionwascreatedbySousa(2010).Thedatabasecontains

204casesallaroundtheworldwithdifferentconstructionmeth-odsanddifferenttypesofaccidents.Theaccidentcaseswereobtainedfromthetechnicalliterature,newspapersandcorrespon-dencewithexpertsinthetunnelingdomain.

Knowledgerepresentationsystems(orknowledgebasedsys-tems)anddecisionanalysistechniqueswerebothdevelopedtofacilitateandimprovethedecisionmakingprocess.KnowledgerepresentationsystemsusevariouscomputationaltechniquesofAI(artificialintelligence)forrepresentationofhumanknowledge

⇑Correspondingauthor.Address:

70MassachusettsAve.,Room1-342,Cam-bridgeMA02139,USA.Tel.:

+16172533598;

fax:

+16172536044.

E-mailaddress:

einstein@mit.edu(H.H.Einstein).

andinference.Decisionanalysisusesdecisiontheoryprinciplessupplementedbyjudgmentpsychology(Henrion,1991).Bothemergedfromresearchdoneinthe1940sregardingdevelopmentoftechniquesforproblemsolvinganddecisionmaking.JohnvonNeumannandOscarMorgensten,whointroducedgametheoryin

‘‘GamesandEconomicBehavior’’(1944),hadatremendousimpactonresearchindecisiontheory.

Althoughthetwofieldshavecommonroots,sincethentheyhavetakendifferentpaths.Morerecentlytherehasbeenaresur-genceofinterestbymanyAIresearchersintheapplicationofprob-abilitytheory,decisiontheoryandanalysistoseveralproblemsinAI,resultinginthedevelopmentofBayesianNetworksandinflu-encediagrams,anextensionofBayesianNetworksdesignedtoincludedecisionvariablesandutilities.The1960ssawtheemer-genceofdecisionanalysiswiththeuseofsubjectiveexpectedutil-ityandBayesianstatistics.HowardRaiffa,RobertSchlaifer,andJohnPrattatHarvard,andRonaldHowardatStanfordemergedasleadersintheseareas.ForinstanceRaiffaandSchlaifer’sAppliedStatisticalDecisionTheory(1961)providedadetailedmathemati-caltreatmentofdecisionanalysisfocusingprimarilyonBayesianstatisticalmodels.Prattetal.(1964)developedbasicdecisionanal-ysis.whileEskesenetal.(2004)andHartfordandBaecher(2004)providegoodsummariesonthedifferenttechniques(faulttrees,decisiontrees,etc.)thatcanbeusedtoassessandmanageriskintunneling.

0886-7798/$-seefrontmatter2011ElsevierLtd.Allrightsreserved.doi:

10.1016/j.tust.2011.07.003

Variouscommercialandresearchsoftwareforriskanalysisdur-ingtunnelconstructionhavebeendevelopedovertheyears,themostimportantofwhichistheDAT(DecisionAidsforTunneling),developedatMITincollaborationwithEPFL(EcolePolytechniqueFé

raledeLausanne).TheDATarebasedonaninteractivepro-gramthatusesprobabilisticmodelingoftheconstructionprocesstoanalyzetheeffectsofgeotechnicaluncertaintiesandconstruc-tionuncertaintiesonconstructioncostsandtime.(Dudtetal.,

2000;

Einstein,2002)However,themajorityofexistingriskanaly-sissystems,includingtheDAT,dealonlywiththeeffectsofran-dom(‘‘common’’)geologicalandconstructionuncertaintiesontimeandcostofconstruction.Thereareothersourcesofrisks,notconsideredinthesesystems,whicharerelatedtospecificgeo-technicalscenariosthatcanhavesubstantialconsequencesonthetunnelprocess,eveniftheirprobabilityofoccurrenceislow.

Thispaperattemptstoaddresstheissueofspecificgeotechnicalriskbyfirstdevelopingamethodologythatallowsonetoidentifymajorsourcesofgeotechnicalrisks,eventhosewithlowprobabil-ity,inthecontextofaparticularprojectandthenperformingaquantitativeriskanalysistoidentifythe‘‘optimal’’constructionstrategies,where‘‘optimal’’referstominimumrisk.Forthatpur-poseadecisionsupportsystemframeworkfordeterminingthe

‘‘optimal’’(minimumrisk)constructionmethodforagiventunnel

Fig.1.BayesianNetworkexample.

therelationsbetweenvariables.Inthisexamplethearrowfrom

CtoB2meansthatChasadirectinfluenceonB2.

Specifically,aBayesianNetworkisacompactandgraphicalrep-resentationofajointdistribution,basedonsomesimplifyingassumptionsthatsomevariablesareconditionallyindependentofothers.AsaresultthejointprobabilityofaBayesianNetworkoverthevariablesU={X1,...,Xn},representedbythechainrulecanbesimplifiedfrom:

n

Y

alignmentwasdeveloped.Thedecisionsupportsystemconsistsoftwomodels:

ageologicpredictionmodel,andaconstructionstrat-egydecisionmodel.BothmodelsarebasedontheBayesianNet-

¼

i

to

Xijx1;

...;

xi1Þ

worktechnique,andwhencombinedallowonetodeterminethe

QnPð

xjparentsð

Þ

where‘‘parents(X)’’isthe

‘optimal’tunnelconstructionstrategies.Thedecisionmodelcon-

parentsetof

iiii

Xi.

tainsanupdatingcomponent,byincludinginformationfromthe

excavatedtunnelsections.Thissystemwasimplementedinarealtunnelproject,thePortoMetroinPortugal.

2.BackgroundonBayesianNetworks

BayesianNetworksaregraphicalrepresentationsofknowledgeforreasoningunderuncertainty.Theycanbeusedatanystageofariskanalysis,andmaysubstitutebothfaulttreesandeventtreesinlogicaltreeanalysis.Whilecommoncauseormoregeneraldepen-dencyphenomenaposesignificantcomplicationsinclassicalfaulttreeanalysis,thisisnotthecasewithBayesianNetworks.Theyareinfactdesignedtofacilitatethemodelingofsuchdependen-cies.Becauseofwhathasbeenstated,BayesianNetworksprovideagoodtoolfordecisionanalysis,includingprioranalysis,posterioranalysisandpre-posterioranalysis.Furthermore,theycanbeex-tendedtoinfluencediagrams,includingdecisionandutilitynodesinordertoexplicitlymodeladecisionproblem.

ABayesianNetworkisaconcisegraphicalrepresentationofthe

jointprobabilityofthedomainthatisbeingrepresentedbythe

ItisthispropertythatmakesBayesianNetworksaverypower-fultoolforrepresentingdomainsunderuncertainty,allowingonetostoreandcomputethejointandmarginaldistributionsmoreefficiently.

InordertoobtainresultsfromBayesianNetworksonedoesinference.ThisconsistsofcomputinganswerstoqueriesmadetotheBayesianNetwork.Thetwomostcommontypesofqueriesare:

–Aprioriprobabilitydistributionofavariable

X...XPð

X1;

Xk;

ð

X1Xk

whereAisthequery-variableandX1toXkaretheremainingvariablesofthenetwork.Thistypeofquerycanbeusedduringthedesignphaseofatunnelforexampletoassesstheproba-bilityoffailureunderdesignconditions(geology,hydrology,etc.).

–Posteriordistributionofvariablesgivenevidence

(observations)

A;

randomvariables,consistingof(RusselandNorvig,2003):

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 艺术创意

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1