自动喂料机设计.docx

上传人:b****3 文档编号:2077240 上传时间:2022-10-26 格式:DOCX 页数:11 大小:173.39KB
下载 相关 举报
自动喂料机设计.docx_第1页
第1页 / 共11页
自动喂料机设计.docx_第2页
第2页 / 共11页
自动喂料机设计.docx_第3页
第3页 / 共11页
自动喂料机设计.docx_第4页
第4页 / 共11页
自动喂料机设计.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

自动喂料机设计.docx

《自动喂料机设计.docx》由会员分享,可在线阅读,更多相关《自动喂料机设计.docx(11页珍藏版)》请在冰豆网上搜索。

自动喂料机设计.docx

自动喂料机设计

自动喂料机

 

院-系:

新科学院 机械系

专业:

机械工程及自动化

年级:

2012级

学生姓名:

舒小画

学号:

2012200613

指导教师:

杨辉

目录

摘要1

一、机器的工作原理及外形图1

二、原始数据1

三、设计要求2

四、机械运动系统简图3

五、运动循环图3

六、传动方案设计4

七、机构尺寸的设计4

1、实现搅料拌勺点E轨迹的机构的设计4

2、设计实现喂料动作的凸轮构5

3、连杆机构的动态静力分析:

6

4、设计不完全齿轮与曲柄所在齿轮的传动7

八、飞轮转动惯量的确定8

九、机械运动方案评价9

十、参考文献10

 

摘要

 

近十多年来,许多研究人员在这一领域做了大量的理论、实验研究。

应用多种非线性分析方法求解带阻尼块叶片的响应特点,为阻尼块的最优设计提供了一定的理论依据。

本文将从结构模型简化、非线性分析方法、阻尼块优化设计等几个方面加以综述以介绍该领域目前的发展状况,飞速的经济发展,人口的快速增长,使得人们对食品的消费需求也迅速增加。

所以提高食品的生产加工效率,促进食品行业的发展至关重要。

在食品工业中,混合是指两种或两种以上不同物料互相混合,成分浓度达到一定程度均匀性的单元操作。

然而,搅拌的过程,是一个必不可少的环节。

 

关键词;自动喂料机;传动机构;执行机构;运动循环图;机械系统方案

 

一、机器的工作原理及外形图

设计用于化学工业和食品工业的自动喂料搅拌机。

物料的搅拌动作为:

电动机通过减速装置带动容器绕垂直轴缓慢整周转动;同时,固连在容器内拌勺点E沿图【1】虚线所示轨迹运动,将容器中拌料均匀搅动。

物料的喂料动作为:

物料呈粉状或粒状定时从漏斗中漏出,输料持续一段时间后漏斗自动关闭物料的搅拌动作为:

电动机通过减速装置带动容器绕垂直轴缓慢整周转动;同时,固连在容器内拌勺E点沿下图所示的虚线所示轨迹运动,将容器中拌料均匀搅动。

物料的喂料动作为:

物料呈粉状或粒状定时从漏斗中漏出,输料持续一段时间后漏斗自动关闭。

喂料机的开启、关闭动作应与搅拌机同步。

物料搅拌好以后的输出可不考虑。

图【1】喂料搅拌机外形及阻力线图

二、原始数据

工作时假定拌料对拌勺的压力与深度成正比,即产生的阻力呈线性变化,如图【1】示。

表8.2为自动喂料搅拌机拌勺E的搅拌轨迹数据。

表8.3为自动喂料搅拌机运动分析数据。

表8.4为自动喂料搅拌机动态静力分析及飞轮转动惯量数据。

表1.1拌勺E的搅拌轨迹数据表

位置号

1

2

3

4

5

6

7

8

方案一

526

301

471

395

220

100

40

165

149

428

663

740

638

460

200

80

表1.2自动喂料搅拌机运动分析数据表

方案号

固定铰链A、D位置

电动机转速/(r/min)

容器转速/(r/min)

每次搅拌时间/s

物料装入容器时间/s

/mm

/mm

/mm

/mm

1700

400

1200

0

1440

70

60

40

 

表1.3自动喂料搅拌机动态静力分析及飞轮转动惯量数据表

方案

/N

/N

m2/kg

m3/kg

Js2/()

Js3/

2000

500

0.05

位于连杆2中点

位于从动连架杆3中点

120

40

1.85

0.06

 

三、设计要求

(1)机器应包括齿轮(或蜗杆蜗轮)机构、连杆机构、凸轮机构三种以上机构。

(2)设计机器的运动系统简图、运动循环图。

(3)设计实现搅料拌勺点E轨迹的机构,一般可采用铰链四杆机构。

该机构的两个固定铰

链A、D的坐标值已在表1.2给出(在进行传动比计算后确定机构的确切位置时,由于传动比限制,D点的坐标允许略有变动)。

(4)对连杆机构进行动态静力分析。

曲柄1的质量与转动惯量略去个计,平面连杆机构从动件2、3的质量、及其转动惯量、以及阻力曲线Q参见表1.3。

根据、和拌勺工作深度h绘制阻力线图,拌勺所受阻力方向始终与点E速度力向相反。

根据各构件重心的加速度以及各构件用加速度确定各构件惯性力和惯性力偶矩,将其合成为一力,求出该力至重心距离

将所得结果列表。

求出各位置的机构阻力、各运动副反作用力、平衡力矩,将计算结果列表。

(5)飞轮转动惯量的确定。

飞轮安装在高速轴上,已知机器运转不均匀系数(见表1.3)以及阻力变化曲线。

注意拌勺进人容器及离开容器时的两个位置,其阻力值不同(其中一个为0),应分别计算。

驱动力矩为常数。

绘制(全循环等效阻力矩曲线)、(全循环等效驱动力矩曲线)、(全循环动能增量曲线)等曲线。

求飞轮转动惯量。

(6)设计实现喂料动作的凸轮机构。

根据喂料动作要求,并考虑机器的基本厂寸与位置,设计控制喂料机开启动作的摆动从动件盘形凸轮机构。

确定其运动规律,选取基圆半径与滚子半径,求出凸轮实际廓线坐标值,校核最大压力角与最小曲率半径。

绘制凸轮机构设计图。

(7)设计实现缓慢整周回转的齿轮机构(或蜗轮蜗杆机构)。

四、机器运动系统简图

 

五、运动循环图

喂料口

开启40s

关闭60s

搅拌勺

不搅拌

搅拌

容器

匀速转动

φ

144°

216°

六、传动方案设计

对于本方案,已知电动机转速为1440r/min,容器转速70r/min,由计算可知,处于同一轴上的凸轮及不完全齿轮的转速为0.6r/min(完成一次搅拌的周期为100秒,即100秒转一转),最高传动比达2400,故可以设计如下:

从电动机输出,经二级减速器减速输出,通过一对具有一定传动比的齿轮的啮合传动,传递给容器,从而使容器达到要求的转速;同时,从减速器输出的传动轴带动蜗杆,通过具有较大传动比的蜗轮蜗杆传动,传递给蜗轮,从而使与蜗轮同轴运动的凸轮及不完全齿轮达到要求的转速。

具体计算如下:

选择传动比为24的二级减速器,此时输出转速为1440/24=60r/min;

要求的容器转速为70r/min,V带的传动比应为60/70=7/6;

蜗杆与减速器输出相连,转速为60r/min,蜗轮转速为0.6r/min,蜗轮蜗杆的传动比应为60/0.6=100;

搅拌四杆机构的曲柄转速可定为10r/min,故不完全齿轮与曲柄所在齿轮的传动比应为0.6/10=0.06。

七、机构尺寸的设计

1、实现搅料拌勺点E轨迹的机构的设计

要实现此轨迹可采用铰链四杆机构,由于该四杆机构的两个固定铰链以及所要实现轨迹上的八个点的坐标已知,故可以根据四杆机构设计方法中轨迹设计法的解析法对各个杆长进行设计,其设计原理如下:

分析:

n=3,PL=4,PH=0.

F=3n-2PL-PH=1

E点的轨迹方程为:

式中共有九个待定尺寸参数,即铰链四杆机构的连杆点最多能精确通过给定轨迹上所选的九个点。

当需通过的轨迹点数少于九个时,可预先选定某些机构参数,以获得唯一解。

将已知的轨迹中的八个点的坐标代入方程中计算可得出各个杆件的长度,但是由于方程比较复杂不易求解,因此先通过图解法大致确定出曲柄长度然后在代入方程求连杆长度。

对于方案A,假定曲柄长度Lab为240mm,已知Lad=640mm,代入方案A的数据可得出其余两个杆长分别为Lbc=570mm、Lcd=400mm。

对于方案B,假定曲柄长度Lab为240mm,已知Lad=640mm,代入方案B的数据可得出其余两个杆长分别为Lbc=563mm、Lcd=404mm。

2、设计实现喂料动作的凸轮机构

实现喂料动作的凸轮机构在运动中受轻载而且低速运转,故只需采用等速变化规律的盘型直动从动凸轮机构即可达到要求。

凸轮机构的推程与喂料系统开口的大小相同,设其为100mm,喂料系统的开启和关闭过程是一个快速的过程,故设其推程角和回程角为5度,根据物料喂入时间和每次搅拌时间即可确定远近休止角的大小,对方案A,其远休止角为216度。

根据机构的整体尺寸设定凸轮的基圆半径为400mm,为尽量减小压力角而设定凸轮的偏心距为200mm。

将以上参数输入计算机凸轮设计软件中即可得凸轮机构的运动曲线和轮廓曲线如下所示:

 

3、连杆机构的动态静力分析:

未做分析

 

4、设计不完全齿轮与曲柄所在齿轮的传动

不完全齿轮传动原理:

在主动齿轮只做出一个或几个齿,根据运动时间和停歇时间的要求在从动轮上作出与主动轮相啮合的轮齿。

其余部分为锁止圆弧。

当两轮齿进入啮合时,与齿轮传动一样,无齿部分由锁止圆弧定位使从动轮静止。

特点:

不完全齿轮机构结构简单、制造容易、工作可靠,从动轮运动时间和静止时间可在较大范围内变化。

但是从动轮在开始进入啮合与脱离啮合时有较大冲击,故一般只用于低速,轻载场合。

在本设计中,蜗杆与减速器输出相连,转速为60r/min,蜗轮转速为0.6r/min,蜗轮蜗杆的传动比应为60/0.6=100;假设选取蜗杆的头数为2,根据传动比可得蜗轮的齿数为200齿。

搅拌四杆机构的曲柄转速可定为10r/min,故不完全齿轮与曲柄所在齿轮的传动比应为.0.6/10=0.06,假设曲柄所在齿轮的齿数为,则根据传动比可得不完全齿轮的齿数为齿,由于拌料行程只为整个工作行程的3/5,所以把不完全齿轮有效齿数则为210齿。

具体计算如下:

选取齿轮标准模数为4,分度圆压力角()、齿顶高系数()、顶隙系数都为标准值(),曲柄所在齿轮,不完全齿轮。

分度圆直径为

齿顶高

齿根高

齿全高

齿顶圆直径

齿根圆直径

基圆直径

齿距

齿厚

齿槽宽

顶隙

根据齿轮参数,就可得到如图所示的齿轮机构:

不完全齿轮A与曲柄所在齿轮B传动示意图(左图)不完全齿轮简图(右图)

说明:

齿轮A有200齿,有10齿锁齿圆弧;齿轮B有20齿,有一齿锁齿圆弧。

齿轮A转过20齿,第21齿恰好转到锁齿圆弧,与B齿轮锁齿圆弧啮合,齿轮B转过10转,齿轮B的锁齿圆弧则与右图所示的锁齿圆弧啮合。

八、飞轮转动惯量的确定

要确定飞轮的转动惯量必须清楚机器在一个周期内运转的驱动力矩和阻力矩,从而计算出次周期的最大盈亏功,另外还须知道机器运转时的速度不均匀系数和机器的额定转速n即可根据公式ΔWmax=(J+Jf)*wm2*δ算出飞轮的等效转动惯量。

根据题目中所给出的原始数据可绘制出(全循环等效阻力矩曲线)、(全循环等效驱动力矩曲线)、(全循环动能增量曲线)曲线如下所示:

由图可知,ΔWmax为阴影部分的面积,经过计算得ΔWmax=3247J,由公式ΔWmax=(J+Jf)wm2δ,可以求得飞轮转动惯量为1.59kg/m2。

 

综合比较,,所以选定方案可以。

九、方案基本介绍

1.传动方案设计

对于方案,已知电动机转速为1440r/min,容器转速65r/min,由计算可知,处于同一轴上的凸轮及不完全齿轮的转速为0.56r/min,最高传动比达2570,故可以设计如下:

从电动机输出,经二级减速器减速输出,通过一对具有一定传动比的齿轮的啮合传动,传递给容器,从而使容器达到要求的转速;同时,从减速器输出的传动轴带动蜗杆,通过具有较大传动比的蜗轮蜗杆传动,传递给蜗轮,从而使与蜗轮同轴运动的凸轮及不完全齿轮达到要求的转速。

2.设计实现喂料动作的凸轮机构

在此动作中受轻载而且低速运转,故只需采用等速变化规律的盘型直动从动凸轮机构即可达到要求。

凸轮机构的推程与喂料系统开口的大小相同,设其为100mm,喂料系统的开启和关闭过程是一个快速的过程,故设其推程角和回程角设为5度,根

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 表格模板 > 书信模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1