南京工程学院数据结构样卷09级加答案Word文件下载.docx

上传人:b****6 文档编号:20710311 上传时间:2023-01-25 格式:DOCX 页数:12 大小:99.41KB
下载 相关 举报
南京工程学院数据结构样卷09级加答案Word文件下载.docx_第1页
第1页 / 共12页
南京工程学院数据结构样卷09级加答案Word文件下载.docx_第2页
第2页 / 共12页
南京工程学院数据结构样卷09级加答案Word文件下载.docx_第3页
第3页 / 共12页
南京工程学院数据结构样卷09级加答案Word文件下载.docx_第4页
第4页 / 共12页
南京工程学院数据结构样卷09级加答案Word文件下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

南京工程学院数据结构样卷09级加答案Word文件下载.docx

《南京工程学院数据结构样卷09级加答案Word文件下载.docx》由会员分享,可在线阅读,更多相关《南京工程学院数据结构样卷09级加答案Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。

南京工程学院数据结构样卷09级加答案Word文件下载.docx

aabcbabcaabcaababc"

,模式串为"

abcaababc"

,写出模式串改进的next数组;

画出KMP算法的匹配过程,给出字符比较次数。

2.什么是栈和队列?

两者有何异同?

什么情况下需要使用栈或队列?

采用顺序存储结构的栈和队列,在进行插入、删除操作时需要移动数据元素吗?

为什么?

什么是队列的假溢出?

为什么顺序存储结构队列会出现假溢出?

怎样解决队列的假溢出问题?

链式存储结构队列会出现假溢出吗?

顺序存储结构的栈会出现假溢出吗?

3.已知一棵二叉树中根次序遍历序列为GCBHKAMFDJE,后根次序遍历序列为CBGHMAJEDFK,画出这棵二叉树并进行中序线索化。

4.设一段正文由字符集{A,B,C,D,E,F,G,H}组成,其中每个字符在正文中的出现次数依次为{23,5,17,4,9,31,29,18},采用哈夫曼编码对这段正文进行压缩存储,画出所构造的哈夫曼树,并写出每个字符的哈夫曼编码。

5.删除以下带权无向图中的顶点D,画出删除D后图的邻接矩阵表示和邻接表表示。

6.构造以下带权无向图的最小生成树,并给出该最小生成树的代价。

7.已知关键字序列为{16,74,60,43,54,90,46,31,29,88,71,64,50},散列表长度为11,采用除留余数法的散列函数为hash(k)=k%11,画出采用链地址法构造的散列表,计算(写出算式)。

8.画出对关键字序列{93,17,56,42,78,15,42*,25,19}进行希尔排序(升序)的每一趟排序过程,说明希尔排序算法的稳定性并解释原因,以及希尔排序适用于什么存储结构。

9.将关键字序列{29,10,25,26,58,12,31,18,47}用筛选法分别建成一个最大堆和一个最小堆,写出两个堆序列并画出其对应的完全二叉树。

三.程序阅读和改错题(15分,每小题5分)

1.阅读以下函数,回答问题。

template<

classT>

voidCirHDoublyLinkedList<

:

concat(CirHDoublyLinkedList<

&

list)

{

DLinkNode<

*rear=head->

prev;

rear->

next=>

next;

>

next->

prev=rear;

rear=>

next=this->

head;

this->

head->

prev=;

next=;

}

上述函数功能是什么?

以下调用语句的运行结果是什么?

CirHDoublyLinkedList<

char>

source("

abcdef"

6),list("

xyz"

3);

(list);

cout<

<

"

source:

source<

list:

list;

2.下列trim()函数欲删除当前字符串对象中的所有空格字符。

voidSString:

trim()已知三叉链表表示的二叉树结点类TriNode声明如下:

classTriNode程序设计题(14分,每小题7分)

1.在带头结点的单链表类HSLinkedList中,增加以下成员函数:

voidHSLinkedList<

removeAll(HSLinkedList<

list)求二叉树中指定结点的层次。

1.使数据类型的定义和实现分离,使一种定义有多种实现。

2.Node<

*table[4];

Node<

table[4];

3."

abac"

4.ABCDEF+*G/-H+*+IJ+K*-

5.36

6.1148

7.7

8.右单支二叉树(包括空二叉树、只有根结点的二叉树)

9.511

10.n*(n-1)/2

11.

12.{41*4134105424}67{7869}

1.模式串"

改进的next数组为

j

1

2

3

4

5

6

7

8

模式串

a

b

c

"

中最长相同的前后缀子串长度k

-1

比较

=

改进的next[j]

2.栈和队列都属于线性表结构,它们是两种特殊的线性表,栈的插入和删除操作都在线性表的一端进行,所以栈的特点是“后进先出”;

而队列的插入和删除操作分别在线性表的两端进行,所以队列的特点是“先进先出”。

深度优先搜索遍历算法需要使用栈作为辅助结构,广度优先搜索遍历算法需要使用队列作为辅助结构。

采用顺序存储结构的栈和队列,在进行插入、删除操作时不需要移动数据元素,因为栈和队列均不能进行中间插入、删除操作。

顺序队列,当入队的元素个数(包括已出队元素)超过数组容量时,队列尾下标越界,数据溢出。

此时,由于之前已有若干元素出队,数组前部已空出许多存储单元,所以,这种溢出并不是因存储空间不够而产生的,称之为假溢出。

顺序队列之所以会产生假溢出现象,是因为顺序队列的存储单元没有重复使用机制。

解决的办法是将顺序队列设计成循环结构。

链式存储结构队列不会出现假溢出。

因为每次元素入队,都要申请新结点,数据不会溢出。

顺序存储结构的栈不会出现假溢出。

因为顺序栈的存储单元可以重复使用,如果数组容量不够,则是数据溢出,而不是假溢出。

(3)

 

(4)

(5)

.

(6)

,代价是45

(7)

(8)

希尔排序算法是不稳定的,因为与距离较远的元素进行比较,不能保证排序稳定性。

希尔排序算法仅适用于顺序存储结构,因为与距离较远的元素进行比较,需要利用随机存储特性。

(9)

三.程序阅读题(15分,每小题5分)

1.将list链表合并连接到当前链表最后,设置list链表为空

(a,b,c,d,e,f,x,y,z)

()

2.①运行结果为“abcdefxyzefxyz”,正确的运行结果是“abcdefxyz”。

②trim()函数首先寻找串的第一个空格字符,用i记住空格字符下标;

再遍历串,将串中的非空格字符(用j记住其下标)逐个向前移动到空格字符位置(i下标);

算法存在错误,删除后没将字符串结束符'

\0'

向前移动到len处,导致cout输出仍然到'

,如下图所示。

③改正:

函数体最后增加以下一句:

element[len]='

;

3.深拷贝创建二叉树时,没有为各结点建立指向父母结点的链。

改正如下:

①当TriNode构造函数不指定parent时

TriNode<

*TriBinaryTree<

copy(TriNode<

*p)

TriNode<

*q=NULL;

if(p!

=NULL)

{q=newTriNode<

(p->

data);

程序设计题(14分,每小题7分)

以下给出参考程序,阅卷老师可根据实际情况评分,重点是表达算法思想。

1.在带头结点的单链表类HSLinkedList中,增加以下成员函数,删除所有与list匹配的子表。

{Node<

*start=head->

next,*front=head;

while(start!

=NULL)

{Node<

*p=start,*q=>

while(p!

=NULL&

&

q!

p->

data==q->

data)求二叉树中指定结点的层次。

一棵二叉树中结点所在的层次定义:

令根结点的层次为1,其他结点的层次是其父母结点的层次加1。

①在二叉链表存储的二叉树类BinaryTree中增加成员函数如下:

intBinaryTree<

getLevel(Tx)//返回x结点所在的层次

{//若空树或未查找到x返回-1

if(root==NULL)

return-1;

returngetLevel(root,1,x);

//令根结点的层次为1

getLevel(BinaryNode<

*p,inti,Tx)

{//在以p结点(层次为i)为根的子树中求x结点所在层次

{if(p->

data==x)

returni;

//查找成功

intlevel=getLevel(p->

left,i+1,x);

//在左子树查找

if(level!

=-1)

returnlevel;

returngetLevel(p->

right,i+1,x);

//继续在右子树中查找

}

//查找不成功

②在二叉链表结点类BinaryNode中增加表示结点层次的成员变量level,结点构造函数声明如下:

BinaryNode(Tdata,BinaryNode<

*left=NULL,BinaryNode<

*right=NULL,intlevel=0)

构造二叉树时设置每个结点的层次属性。

例如,二叉树类BinaryTree的一种构造函数声明如下:

BinaryTree<

BinaryTree(Tprelist[],intn)//以标明空子树的先根序列构造一棵二叉树

{inti=0;

root=create(prelist,n,i,NULL,1);

//根结点的层次为1

//以标明空子树的先根次序遍历序列创建一棵子树,该子树根结点是prelist[i],

//根结点层次是level,其父母结点由parent指向,返回创建子树的根结点指针

BinaryNode<

*BinaryTree<

create(Tprelist[],intn,int&

i,intlevel)

{BinaryNode<

*p=NULL;

if(i<

n)

{Telem=prelist[i++];

if(elem!

{p=newBinaryNode<

(elem,NULL,NULL,level);

//创建结点,层次是level

p->

left=create(prelist,n,i,level+1);

//创建左子树

right=create(prelist,n,i,level+1);

//创建右子树

returnp;

BinaryTree类的getLevel(p)成员函数声明如下,算法同查找。

getLevel(Tx)//返回值为x结点所在的层次,若空树或未查找到x返回-1

*find=search(x);

//查找

if(find==NULL)

returnfind->

level;

在二叉树中插入一个结点时,以插入结点为根的子树中所有结点的层次也随之改变,因此,BinaryTree类需要提供以下setLevel()方法动态维护层次属性。

//设置以p结点(层次为level)为根的子树中所有结点的层次

voidBinaryTree<

setLevel(BinaryNode<

*p,intlevel)

{if(p!

{p->

level=level;

setLevel(p->

left,level+1);

right,level+1);

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 军事

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1