人教版小学数学六年级下册知识点总结Word文档格式.docx

上传人:b****6 文档编号:20677358 上传时间:2023-01-25 格式:DOCX 页数:8 大小:89.71KB
下载 相关 举报
人教版小学数学六年级下册知识点总结Word文档格式.docx_第1页
第1页 / 共8页
人教版小学数学六年级下册知识点总结Word文档格式.docx_第2页
第2页 / 共8页
人教版小学数学六年级下册知识点总结Word文档格式.docx_第3页
第3页 / 共8页
人教版小学数学六年级下册知识点总结Word文档格式.docx_第4页
第4页 / 共8页
人教版小学数学六年级下册知识点总结Word文档格式.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

人教版小学数学六年级下册知识点总结Word文档格式.docx

《人教版小学数学六年级下册知识点总结Word文档格式.docx》由会员分享,可在线阅读,更多相关《人教版小学数学六年级下册知识点总结Word文档格式.docx(8页珍藏版)》请在冰豆网上搜索。

人教版小学数学六年级下册知识点总结Word文档格式.docx

6.圆柱:

以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体

即AG矩形的一条边为轴,旋转360°

所得的几何体就是圆柱。

其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'

G旋转形成的两个圆叫做圆柱的底面,DD'

旋转形成的曲面叫做圆柱的侧面。

7.圆柱的体积:

圆柱所占空间的大小,叫做这个圆柱体的体积。

设一个圆柱底面半径为r,高为h,则体积V:

V=πr2h;

如S为底面积,高为h,体积为V:

V=Sh  

8.圆柱的侧面积:

圆柱的侧面积=底面的周长*高,S侧=Ch(注:

c为πd)

圆柱的两个圆面叫做底面(又分上底和下底);

圆柱有一个曲面,叫做侧面;

两个底面之间的距离叫做高(高有无数条)。

特征:

圆柱的底面都是圆,并且大小一样。

9.圆锥解析几何定义:

圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。

10.圆锥立体几何定义:

以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。

该直角边叫圆锥的轴。

11.圆锥的体积:

一个圆锥所占空间的大小,叫做这个圆锥的体积。

一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。

根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:

V=1/3Sh

S是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径

12.圆锥体展开图的绘制:

圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。

(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)

13.圆锥的表面积:

一个圆锥表面的面积叫做这个圆锥的表面积。

圆锥的表面积由侧面积和底面积两部分组成。

S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)

14.圆柱与圆锥的关系:

与圆柱等底等高的圆锥体积是圆柱体积的三分之一。

体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。

体积和底面积相等的圆锥与圆柱(等低等高)之间,圆锥的高是圆柱的三倍。

底面积和高不相等的圆柱圆锥不相等。

15.生活中的圆锥:

生活中经常出现的圆锥有:

沙堆、漏斗、帽子。

圆锥在日常生活中也是不可或缺的。

16.比的意义

(1)两个数相除又叫做两个数的比

(2)“:

”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

17.比的性质:

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

18.求比值和化简比:

求比值的方法:

用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

19.比例尺:

图上距离:

实际距离=比例尺

要求会求比例尺;

已知图上距离和比例尺求实际距离;

已知实际距离和比例尺求图上距离。

线段比例尺:

在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

20.按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:

首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

21.比例的意义:

比例的意义

表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

22.比例的性质:

在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

23.解比例:

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

24.成正比例的量:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)

25.成反比例的量:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×

y=k(一定)

26.统计表:

把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表。

27.统计组成部分:

一般分为表格外和表格内两部分。

表格外部分包括标的名称,单位说明和制表日期;

表格内部包括表头、横标目、纵标目和数据四个方面。

28.统计种类:

单式统计表:

只含有一个项目的统计表。

复式统计表:

含有两个或两个以上统计项目的统计表。

百分数统计表:

不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表。

29.统计表制作步骤:

(1)搜集数据

(2)整理数据:

要根据制表的目的和统计的内容,对数据进行分类。

(3)设计草表:

要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度。

(4)正式制表:

把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期。

30.统计图:

用点线面积等来表示相关的量之间的数量关系的图形叫做统计图。

31.条形统计图

(1)用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按一定的顺序排列起来。

(2)优点:

很容易看出各种数量的多少。

注意:

画条形统计图时,直条的宽窄必须相同。

(3)取一个单位长度表示数量的多少要根据具体情况而确定

(4)复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。

(5)制作条形统计图的一般步骤:

a)根据图纸的大小,画出两条互相垂直的射线。

b)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。

c)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少。

d)按照数据的大小画出长短不同的直条,并注明数量。

32.折线统计图

(1)用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。

折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定。

(3)制作折线统计图的一般步骤:

b)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔。

d)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量。

33.扇形统计图

(1)用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。

很清楚地表示出各部分同总数之间的关系。

(3)制扇形统计图的一般步骤:

a)先算出各部分数量占总量的百分之几。

b)再算出表示各部分数量的扇形的圆心角度数。

c)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。

d)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开。

扩展资料

1.负数的由来:

人们在生活中经常会遇到各种相反意义的量。

比如,在记账时有余有亏;

在计算粮仓存米时,有时要记进粮食,有时要记出粮食。

为了方便,人们就考虑了相反意义的数来表示。

于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。

可见正负数是生产实践中产生的。

2.负数的应用:

负数可以广泛应用于温度、楼层、海拔、水位、盈利、增产/减产、支出/收入、得分/扣分等等的这些方面中

3.负数加减乘除的计算法则:

+:

负数1+负数2=-|负数1+负数2|=负数

  负数+正数=符号取绝对值较大的加数的符号,数值取“用较大的绝对值减去较小的绝对值”的所得值

-:

负数1-负数2=负数1+|负数2|=负数1加上负数2的相反数,再按负数加正数的方法算

  负数-正数=-|正数+负数|=负数异号两数相减,等于其绝对值相加

×

负数1×

负数2=|负数1×

负数2|=正数

  负数×

正数=-|正数×

负数|=负数

÷

负数1÷

负数2=|负数1÷

  负数÷

正数=-|负数÷

正数|=负数

总得来说,就是同数相除等于正数,异数相除等于负数。

4.正数和正整数的区别

正数包括:

正整数、正分数(包括正小数)。

(且正数不包括0)

辨析:

零(0)既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.正整数、负整数、正分数、负分数和零(0)统称有理数。

意义

(1)从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应零。

(2)在数轴上表示的两个数,正方向的数大于负方向的数。

(3)正数都大于0,负数都小于0,正数大于一切负数。

注:

单位长度则是指取适当的长度作为单位长度,比如可以取2m作为单位长度“1”,那么4m就表示2个单位长度。

5.直圆柱:

直圆柱也叫正圆柱、圆柱,可以看成是以矩形的一边所在直线为轴、其余各边绕轴旋转而成的曲面所围成的几何体。

6.圆锥的其它概念

(1)圆锥的高:

圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高;

(2)圆锥的侧面积:

将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长*母线/2;

没展开时是一个曲面。

 

(3)圆锥的母线:

圆锥的侧面展开形成的扇形的半径、底面圆周上点到顶点的距离。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且侧面展开图是扇形。

7.圆锥的三视图:

圆锥三视图是观测者从三个不同位置观察而画出的图形。

其主视图和侧视图均为等腰三角形,俯视图是一个圆和圆心。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 设计艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1