有限元计算原理与方法Word文件下载.docx

上传人:b****5 文档编号:20655861 上传时间:2023-01-24 格式:DOCX 页数:9 大小:90.09KB
下载 相关 举报
有限元计算原理与方法Word文件下载.docx_第1页
第1页 / 共9页
有限元计算原理与方法Word文件下载.docx_第2页
第2页 / 共9页
有限元计算原理与方法Word文件下载.docx_第3页
第3页 / 共9页
有限元计算原理与方法Word文件下载.docx_第4页
第4页 / 共9页
有限元计算原理与方法Word文件下载.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

有限元计算原理与方法Word文件下载.docx

《有限元计算原理与方法Word文件下载.docx》由会员分享,可在线阅读,更多相关《有限元计算原理与方法Word文件下载.docx(9页珍藏版)》请在冰豆网上搜索。

有限元计算原理与方法Word文件下载.docx

的由众多单元以一定方式连接成的离散物体。

因此,用有限元法计算获得的结果

只是近似的,单元划分越细且又合理,计算结果精度就越高。

与位移不同,应力和应变是在Gauss积分点〔或应力点〕而不是在节点上计算的,而桩的内力那么可通过对桩截面进行积分褥到。

单元位移插值函数的选取

在有限元法中,将连续体划分成许多单元,取每个单元的假设干节点的位移

ett

作为未知量,即{「•}珂Uj,Vj,Wj,...],单元体内任一点的位移为{f}二[u,v,w]。

引入位移函数N〔x,y,3表示场变量在单元内的分布形态和变化规律,以便用场变量在节点上的值来描述单元内任一点的场变量。

因此在单元内建立的位移模

式为:

{f}=[N]{}&

〔3-1〕

其中:

[N]二[INJN2,IN3……IN15],I为单位矩阵。

按等参元的特性,局部坐标〔,「〕到整体坐标〔x,y,z〕的坐标转换也采用与位移插值类似的表达式。

经过坐标变化后子单元与母单元〔局部坐标下的规那么

单元〕之间建立一种映射关系。

不管内部单元或边界附近的单元均可选择相同的位移函数,那么为它们建立单元特性矩阵的方法是相同的。

因此,对于15节点楔

形体单元体内各点位移在整体坐标系〔x,y,Z下一般取:

15

u=瓦Ni(f©

)Ui

7

(3-2)

v八Ni(,,)Vi

i=1

如=工Nid,U)Wi

i丄

上式中的(u,v,w)为整体坐标系下节点i处的位移值,叫(©

□,©

)为在局部坐标系下节点相应的形函数

单元特性分析

利用几何方程、本构方程、虚功原理或位能变分方程求解单元节点力与节点位移关系的表达式,即单元刚度矩阵。

根据几何方程可建立单元内的应变矩阵{;

}珂;

x,;

y,;

z,xy,yz,zx}:

(3-3)

其中[B]=[B,B••…BJ,

(3-6)

{F}_[k]{}e

其中[k]为单元的劲度矩阵,[kP[B]T[D][B]dxdxdz

对于整体结构上的任一点i,建立平衡方程:

(3-7)

送{F}={R}

e

{Ri}为i节点上的外荷。

上式表示{R}与围绕i点的各单元在i点上的节点力之和相平衡。

对每一个位移未知的节点,都可写出3-7式的方程,利用结构力的平衡条件和边界条件把各个单元按原来的结构重新联接起来,形成分析对象的整体有限元平衡方程组:

(3-8)

其中,[k]为整体劲度矩阵,Kijkij;

{}为整个结构的节点位移矩

阵,{R}为整个结构的节点荷载矩阵,是的。

由式(3-8)求出节点位

移{--}由式(3-3)、式(3-5)求出各单元的应变和应力。

1.2.非线性有限元分析

非线性现象是在实际的结构分析中经常遇到的问题。

与线性分析相比,非线性分析中荷载与位移之间的关系已不是直线关系,而是曲线关系

土体的非线性分析一般来说采用非线性的分析方法,选用适当的土体本构系,进行有限元计算。

非线性问题一般有材料非线性和几何非线性两种。

几何非线性即存在大变形,其变化的几何形状可能引起结构的非线性

响应,即应变与位移的关系不里线性,应变不仅包括位移对坐标的一阶导数,还要包括高阶导数。

在进行小应变或者小变形分析时,假定位移和变形总是足够小〔这种假定取决于特定分析要求中的精度等级〕可以忽略结构变形对系统刚度的影响,即基于最初几何形状的结构刚度的一次迭代足以计算出分析结果。

随着变形位移增长,一个有限单元的已移动的坐标可以多种方式改变结构的刚度,进行屡次迭代来获得一个有效的解,这就是几何非线性。

除了结构大变形引起剐度变化以外。

许多与材料有关的参数同样可以

改变结构刚度。

材料的非线性即是材料的应力一应交关系是非线性的。

要有弹性非线性模型和弹塑性模型两大类。

弹性非线性理论是以弹性理论为根底,在微小的荷载增量范围内,把土看作弹性材料,从一个荷载增量变化到另一个荷载增量,土体的弹性常数发生变化,以考虑非线性;

弹塑性模型理论认为土体的变形包括弹性和塑性变形两局部,把弹性理论和塑性理论结合起来建立的本构模型。

土体中的弹塑性本构关系都是用增量形

式表示的,因此,计算方法也宜用增量法。

某级荷载增量pR]作用下,

各单元的应力状态不同。

有些可能处于弹性区,那么刚度矩阵要用弹性矩阵

[D],有些可能产生塑性屈服,那么须运用屈服准那么、硬化规律和流动法那么建立的弹塑性刚度矩阵[Dep]来代替[D]。

反映到式〔3-5〕,其中的矩阵

[K]也随应力或

[D]不是常量其随应力或应变改变,由此推导的劲度矩阵变形而变。

对于相适应流动法那么g二f,贝y:

科幷T

[D]{.}{.}T[D]

[DepP[D]-

C(JC<

J

T

A{—}T[D]{—}式中A为塑性硬化模量,是硬化参数函数。

因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。

因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。

[K〔「〕]{「}={R}〔3-10〕

这是位移的非线性方程组。

直接解这样的方程组是困难的,因此简化为一系列的线性问题的解逐步逼近非线性问题的解,非线性问题可以理解为一些线性解进行迭代的结果。

1.3.有限单元法解比奥固结方程

对于土工问题有限元分析可以采用有效应力法、总应力法和准有效应

力法三种。

有效应力法严格区分土体中的有效应力与孔隙水压力。

将土体骨架变形与孔隙水的渗透同步考虑,因而比总应力法更真实反映土体自身特性,能更合理计算土体对荷载的响应。

有效应力法有两个未知量,即土体骨架的变形和孔隙水压力。

对于非饱和土还需要增加一个孔隙气压力这个变量。

有效应力法根本上以Biot动力固结方程为根底,其计算较为复杂,计算工作量也较大。

土体的总应力有限元法实际上与其他结构有限元分析在计算原理上没有大的区别,主要在材料的本构模型的选择上不同,其实质认为土体是一种由土颗粒和孔隙水组成之间的相互关系,将之合成一个整体,共同一个整体,共同研究其整体的应力与变形状态。

总应力法不能反映土体固结作用

在有效应力分析中,如果采用与总应力法同样的土性参数并令孔隙水压力为0,那么有效应力等于总应力,相应的有效应力法转变为总应力法。

因此,总应力法是有效应力法的一个特例。

在土体材料采用不捧水指标时,

总应力法计算出来的是加荷瞬间或短期应力和变形,而采用排水指标进行的总应力分析那么得到的是有效应力分析的最终结果,也就是孔压消散完毕,土体固结完成时的应力和交形结果。

在土工问题分析中有时还用总应力和太沙基固结理论相结合的方法来进行有效应力分析〔简称准有效应力

法〕,该法是先用总应力法求得应力和变形,然后根据太沙基固结理论考虑孔压的消散以及有效应力和变形随时间的变化。

这种分析法对于二维和三维渗流而已是近似的,对于只有一个方向渗水的固结问题是精确的。

在Plaxis3DFoundation程序中,进行最终沉降分析时是材料类型

为排水指标的总应力法分析,而进行固结有限元沉降分析时采用的是以Biot固结理论为根底的有效应力法.采用有效应力法可以较为全面地得到桩土的应力、变形和孔压变化的情况。

.比奥固结理论

太沙基固结理论只在一维情况下是精确的,对二维、三维问题并不精确。

太沙基一伦杜立克理论〔扩散方程〕将应力应变关系视为常量〔E=常数〕的同时,假设三个主应力〔总应力〕之和不变,不满足变形协调条件。

比奥理论从较严格的固结机理出发推导了准确反映孔隙水压力消散与土骨架变形相互关系的三维固结方程。

该理论将水流连续条件与弹性理论结合求解了土体受力后的应力、应变、孔隙水压力的生成和消散过程,

两理论均假设土骨架是线弹性体,变形为小变形,土颗粒与孔隙水均不可压缩,孔隙水渗流服从达西定律。

在土工数值计算中,可使用非线性弹塑性模型代替线弹性模型与比奥固结理论耦合求解。

比奥固结理论是严格按照弹性理论,使饱和粘土在固结过程中必须满足应力平衡方程、几何方程及虎克定律,因此对于三维固结问题可导出如下三个平衡方程:

L2GddwxcWycwzcu

-G72Wx+g—(一+一+—)+一=0

1-2vexexcyczex

~r

2GetwxEWydwzcu

(3-11)

—G灯wy+琴一(++)+——=0

1-2vdyexcyczdy

_2GOcwx^Wycwzcu斗

—G%z+」一¥

—(—+—+—)+—=-V

1-2vczexcyczcz

根据饱和土的连续性在一个元素体中,在一定的时间内单元土体积的

压缩量等于流进和流出该单元体的流量变化之和,并引进达西定律,从而

推导如下连续方程:

1:

wwy:

wk2

(3-12)

(xyz)2u

txy:

z

w

式〔3一11〕和式〔3一12〕联立就是比奥固结方程

式中

wx、Wy、wz—分别为在x,y和z三个轴向的位移;

u—孔隙水压力;

G—剪切模量;

v—泊松比;

—土的重度;

v—体应变;

k―

渗透系数,假设土的各向渗透性相同;

W

-水的容重;

-2「2

\、2—

—2心CC

拉普拉斯算子,、2r2

excycz

比奥固结方程中含有WX、Wy、Wz和U四个未知函数•在一定的边

界条件和初始条件下,可以解出任何时间及任何一点的Wx、Wy、Wz和

u。

但问题远不这么简单,就是二维问题也很难求得该未知函数的解析

解。

因此,该理论虽早在1941年就提出来了,但未得到推广使用,直到近年来由于电子计算机的出现,才有人幵始用有限元法,把上述理论运用于解决固结问题。

.比奥固结有限元方程

根据有效应力原理,总应力为有效应力和孔隙水压力之和,且孔隙水不承受剪应力。

{「}〈}{u}〔3-13〕

{U}珥N]「}e〔3-14〕

{「}=[D]{『[D][B]{}e〔3-15〕

{u}为节点孔隙水压力,[N]二[叫,N2,……NJ,{}e为单元的节点超静水压力。

由虚位移原理可推导得出单元节点力与某一时刻已产生的位移所对

应的骨架应力以及尚未消散的超静水压力两局部相平衡。

{F}^[k]f}e[k]{}e

〔3-16〕

式中[kf—就是通常单元的劲度矩阵

[k]—单元节点孔隙压力所对应的那局部节点力;

对于所有位移未知的节点建立整体平衡方程,得有限单元法平衡方

程:

[K]{}[K]{,{R}〔3-17〕

将每个节点周围各单元内的“领域〞连在一起形成以节点为中心的闭合“全领域〞,对节点i其周围各单元的边界

向外流出的流量总和为0,目卩图3-2节点i的“全领域〞

对于一个单元来说是流出,对于相邻的另一单元便是流进,可对I节点的

“全领域〞建立连续性方程:

[K]{J[K]{}=0〔3-18〕

[K]和[K]分别由单元矩阵[k]和[k]中的元素叠加而成。

[k]的元素为节点位移所对应的“节点领域〞的体积改变量:

[k]为节点孔隙压力

差所产生的水力坡降在△t时间内引起的从“节点领域〞边界的排水量。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1