对CAPM模型的详细总结.docx
《对CAPM模型的详细总结.docx》由会员分享,可在线阅读,更多相关《对CAPM模型的详细总结.docx(17页珍藏版)》请在冰豆网上搜索。
对CAPM模型的详细总结
关于CAPM模型的总结
资产定价理论是关于金融资产的价格决定理论,这些金融资产包括股票、债券、期货、期权等有价证券。
价格决定理论在金融理论中占有重要的地位,定价理论也比较多,以股票定价为例,主要有:
1.内在价值决定理论。
这一理论认为,股票有其内在价值,也就是具有投资价值。
分析股票的内在价值,可以采用静态分析法,从某一时点上分析股票的内在价值。
一般可以用市盈率和净资产两个指标来衡量;也可以采取动态分析法。
常用的是贴现模型。
贴现模型认为股票的投资价值或者价格是股票在未来所产生的所有收益的现值的总和。
2.证券组合理论。
现代证券组合理论最先由美国经济学者Markowitz教授创立,他于1954年在美国的《金融》杂志上发表了一篇文章《投资组合选择》,提出了分散投资的思想,并用数学方法进行了论证,从而决定了现代投资理论的基础。
3.资本资产定价理论(CapitalAssetsPricingModel,CAPM模型)。
证券组合理论虽然从理论上解决了如何构造投资组合的问题,但是这一过程相当繁杂,需要大量的计算,和一系列严格的假设条件。
这样就使得这一理论在实际操作上具有一定的困难。
投资者需要一种更为简单的方式来进行处理投资事宜。
于是资本资产定价模型就产生了。
1964年是由美国学者Sharpe提出的。
这个模型仍然以证券组合理论为基础,在分析风险和收益的关系时,提出资产定价的方法和理论。
目前已经为投资者广泛应用。
4.套利定价模型(ArbitragePricingTheory,APT)。
1976年由Ross提出,与CAPM模型类似,APT也讨论了证券的期望收益与风险之间的关系,但所用的假设与方法与CAPM不同。
CAPM可看作是APT在某些更严格假设下的特例。
APT在形式上是把CAPM的单因子模型变为一个多因子模型。
本文主要就CAPM理论进行一些探讨,从几个方面对这个重要的资产定价模型进行剖析。
一.CAPM模型介绍
Sharpe在一般经济均衡的框架下,假定所有投资者都以自变量为收益和风险的效用函数来决策,导出全市场的证券组合的收益率是有效的以及资本资产定价模型(CAPM)。
CAPM的基本假定:
①投资者根据与其收益和收益的方差来选择投资组合;
②投资者为风险回避者;
③投资期为单期;
④证券市场存在着均衡状态;
⑤投资是无限可分的,投资规模不管多少都是可行的;
⑥存在着无风险资产,投资者可以按无风险利率借入或借出无风险资产;
⑦没有交易成本和交易税;
⑧所有投资者对证券收益和风险的预期都相同;
⑨市场组合包括全部证券种类。
在上述假设条件下,可以推导出CAPM模型的具体形式:
,。
其中表示证券的期望收益,为市场组合的期望收益,为无风险资产的收益,为证券收益率和市场组合收益率的协方差,为市场组合收益率的方差。
CAPM模型认为,在均衡条件下,投资者所期望的收益和他所面临的风险的关系可以通过资本市场线(CapitalMarketLine,CML)、证券市场线(SecurityMarketLine,SML)和证券特征线(characteristicline)等公式来说明。
1、资本市场线(CapitalMarketLine,CML):
证券有效组合的风险与该组合的预期收益率关系的表达式。
虽然资本市场线表示的是风险和收益之间的关系,但是这种关系也决定了证券的价格。
因为资本市场线是证券有效组合条件下的风险与收益的均衡,如果脱离了这一均衡,则就会在资本市场线之外,形成另一种风险与收益的对应关系。
这时,要么风险的报酬偏高,这类证券就会成为市场上的抢手货,造成该证券的价格上涨,投资于该证券的报酬最终会降低下来。
要么会造成风险的报酬偏低,这类证券在市场上就会成为市场上投资者大量抛售的目标,造成该证券的价格下跌,投资于该证券的报酬最终会提高。
经过一段时间后,所有证券的风险和收益最终会落到资本市场线上来,达到均衡状态。
资本市场线是把有效组合作为一个整体来加以研究的。
那么单个证券的风险和收益水平是怎样的证券市场线对此做出了说明。
2、证券市场线(SecurityMarketLine,SML):
证券与市场组合的协方差风险与该证券的预期收益率关系的表达式。
证券市场线也可以用另一种方式来说明。
对证券市场线的公式进行变换后,就会用一个指标来表示证券的风险。
实际上,这个系数是表示了某只证券相对于市场组合的风险度量。
对这个特别作如下的说明:
(1)由于无风险资产与有效组合的协方差一定为零,则任何无风险资产的值也一定为零。
同时任何值为零的资产的期望回报率也一定为零。
(2)如果某种风险证券的协方差与有效组合的方差相等,值为1,则该资产的期望回报率一定等于市场有效组合的期望回报率,即这种风险资产可以获得有效组合的平均回报率。
(3)值高时,投资于该证券所获得的预期收益率就越高;值低时,投资于该证券所获得的预期收益率就越低。
实际上,证券市场线表明了这样一个事实,即投资者的回报与投资者面临的风险成正比关系。
正说明了:
世上没有免费的午餐。
3、证券特征线(characteristicline)
证券的超额预期收益率与市场超额预期收益率之间关系的表达式。
CAPM模型给出了单个资产的价格与其总风险各个组成部分之间的关系,单个资产的总风险可以分为两部分,一部分是因为市场组合收益变动而使资产收益发生的变动,即值,这是系统风险;另一部分,即剩余风险被称为非系统风险。
单个资产的价格只与该资产的系统风险大小有关,而与其非系统风险的大小无关。
以上简单介绍了CAPM模型,下面将从几个方面详细的推导CAPM模型,并且探讨模型背后的含义,最后给出一些CAPM模型的检验及实证结果。
二.CAPM模型的推导
CAPM模型的导出有多种方法,下面简要的介绍几种常见的推导方法:
1.由Markowitz证券组合选择理论推出CAPM模型:
Markowitz证券组合选择理论研究的是这样一个问题:
一个投资者同时在许多种证券上投资,如何选择各种证券的投资比例,使得投资收益最大,风险最小。
在这个问题上,Markowitz的巨大贡献在于他将收益和风险这两个模糊的经济学概念明确的表示为具体的数学概念。
将证券的收益率看做一个随机变量,收益就定义为这个随机变量的数学期望,风险定义为这个随机变量的标准差。
那么证券组合选择问题就归结为一个数学问题:
选择什么样的证券投资比例使得随机变量的期望最大,标准差最小。
这样,Markowitz的问题(均值-方差证券组合选择问题)就表示为:
这里,,表示与之间的协方差矩阵,是正定的,即对任何,有,这就排除了这种证券中存在无风险证券的情况。
Markowitz证券组合选择理论的基本结论就是:
在证券允许卖空的情况下,组合前沿是一条双曲线的一支;在证券不允许卖空的情况下,组合前沿是若干段双曲线段的拼接。
组合前沿的上半部称为有效前沿,对于有效前沿来说,不存在收益和风险两方面都由于它的证券组合。
若证券组合中包含无风险证券,那么,假设除上述种证券外,另外还有第种证券为无风险证券,并且它的无风险利率为常随机变量。
于是组合将定义为满足:
的,,,记,从而:
组合的方差显然仍为。
那么,在含有无风险证券的情况下的Markowitz问题变为
形式上比不含有无风险证券的Markowitz问题少了一个约束条件,这是个二次规划问题,用Lagrange乘子法求得其解:
其解满足的充要条件为:
由此可解得:
;
这就是说,与之间在平面上的双曲线关系在这种情形下退化为两条直线:
由于必须为正,所以这两条直线只有右边的半条射线,相交于轴上的点。
上半条射线是有效前沿,下半条射线是无效前沿。
并且,从经济意义上看,无风险利率与总体最小风险组合的期望收益率相比应该要小,否则投资者不会投资于风险证券而只投资于无风险证券。
如上所述,含有无风险证券的投资组合的有效前沿是一条射线,称为资本市场线:
,这意味着如下关系:
。
左端的比值称为Sharpe比,用来衡量风险效益,即因承担风险而可能带来的收益。
含有无风险证券的投资组合的有效前沿的特点就在于其上的Sharpe比是常数,它完全由各风险证券的期望收益率和它们之间的协方差矩阵决定。
同时,有效前沿射线与余下的风险证券组合的有效前沿相切于一点。
因此,在这条射线上的每一点所对应的期望收益有:
整理可得:
,其中,。
这说明对应各种有正的证券组合总存在有同样收益的有效前沿上的组合,上式也可以理解为与之间的关系,它的图像也是一条直线,称为证券市场线。
这个等式具有CAPM的形式,但并不是CAPM,下面我们通过二基金分离定理来推导出CAPM模型。
因为Markowitz问题的解是对于线性方程组的求解。
所以解的集合满足“叠加原理”,即极小风险组合的仿射组合仍然是极小风险组合,写成数学形式就是下面的二基金分离定理:
设组合和分别是均值-方差组合选择问题的对于期望收益率分别为和的解,并且。
同时,上述推导的假设成立,那么是极小风险组合的充分必要条件为存在实数,使得。
如果和都是有效组合,而在0和1之间,那么,也是有效组合。
上述定理的经济学意义在于:
如果投资者的证券投资决策就是要根据他本人的财力和风险承受能力在均值-方差问题的最优解中选取一点,那么他考虑全体证券组合与考虑证券的两种组合的组合是一样的。
这两种组合在现实证券市场中可能就是两种业绩良好的共同基金。
因此,也就是说,投资者不必考虑全体证券如何组合,只需考虑如何搭配这两种基金的组合即可。
有了二基金分离定理,我们就可以由两个极小风险组合的组合生成n种证券的整个组合前沿,如果这两种组合看成两种证券,也可以推出同样的组合前沿。
定理:
设和是两种证券,并且它们的期望收益率,那么任何证券不改变和所生成的组合前沿的充分必要条件为:
存在实数,使得①;②;③
有上述定理的推论就得到CAPM模型:
推论:
设证券和满足上面定理的假设,并且。
那么任何证券不改变和所生成的组合前沿的充分必要条件为其收益率满足下列“一般资本资产定价模型”:
,;特别是当证券为“市场组合”时,并把记做,上式就变为零资本资产定价模型,;当证券是无风险证券时,就变为通常的资本资产定价模型,。
现在还有最后一个问题就是:
市场组合是否时有效的如果市场组合有效,那么上述定理推论中的就适用于这一市场组合。
对此,Sharpe认为:
如果假设所有投资者都是“理性投资者”,并且他们的投资决策都是按照“均值-方差”的原则来进行的,那么每个投资者的证券选择都形成一个有效组合。
而两个有效组合的证券合在一起,一定也形成一个有效组合。
这是因为它刚好形成这两个有效组合的凸组合。
由此也可以导得有限个投资者的所有证券合在一起形成的证券组合也是有效的;尤其当市场组合式有效的时候。
综上所述,我们就由Markowitz证券组合选择理论推出二级分离定理并最终得到了CAPM模型的结果。
2.Sharpe证明的CAPM模型:
Sharpe的证明基于这样的思想:
对于任何市场中的证券(或证券组合),它与市场组合的组合所形成的风险-收益双曲线必定与资本市场线相切于市场组合所对应的点上。
考虑一个证券组合,若某种风险资产被选择,投资于上的比例为,投资于其他资产也就是市场组合的比例为,这样的证券组合的期望收益和标准差为:
所有这样的投资组合都位于连接和的直线上:
;
得到连接的直线的斜率就是:
;
所以有:
;
在直线的端点处,,代入于是有:
;
又因为点在CML直线上的斜率与的直线的斜率应相等,于是有:
;
整理可得:
,;
于是得到了CAPM模型的结果。
3.线性定价法则推出的的CAPM模型:
线性定价法则是无套利假设的一个层次,而在一定的假设下,线性定价法则就意味着随机折现因子的存在,随机折现因子理论假设所有的资产定价都表现为一个随机折现因子,即任何未来价值不确定的金融资产的当前价值等于