北师大版七年级一元一次方程解应用题总结和复习Word格式.docx
《北师大版七年级一元一次方程解应用题总结和复习Word格式.docx》由会员分享,可在线阅读,更多相关《北师大版七年级一元一次方程解应用题总结和复习Word格式.docx(12页珍藏版)》请在冰豆网上搜索。
×
100%
(3)商品销售额=商品销售价×
商品销售量
(4)商品的销售利润=(销售价-成本价)×
销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
5.和差倍分问题(劳力调配问题):
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
(1)倍数关系:
通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:
通过关键词语“多、少、和、差、不足、剩余……”来体现.
(3)增长量=原有量×
增长率现在量=原有量+增长量
6.行程问题:
路程=速度×
时间时间=路程÷
速度速度=路程÷
时间
(1)相遇问题:
快行距+慢行距=原距
(2)追及问题:
快行距-慢行距=原距
(3)航行问题:
顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7.储蓄问题
利润=
100%利息=本金×
利率×
期数
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵利息=本金×
期数
本息和=本金+利息
利息税=利息×
税率(20%)
8.工程问题:
工作量=工作效率×
工作时间
完成某项任务的各工作量的和=总工作量=1
一、数字问题。
要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。
列方程的前提还必须正确地表示多位数的代数式,abc=___________。
1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?
2、、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。
二、日历中的方程(掌握日历或卡片中的规律)
日历中的规律:
横行相邻两数相差____竖行相邻两数相差___。
1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是()
An+1Ba+(n+1)Ca+nDa+(n-1)
2、如果今天是星期三,那么一年(365天)以后的今天是星期___________
3、若今天是星期一,问过2010年后是星期____________.
4、将1~7七个自然数分别填入下图锥中的各圆圈内,使三条线段上的三数之和、两圆周上的三数之和都等于12(如图)
5、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。
A3B4C5D6
6、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?
7、表2是从表1中截取的一部分,则a=_______
表1表2
10
a
21
1
2
3
4
…
6
8
9
12
16
...
…
(第四题)
8、将连续的自然数1~1001按如图的方式排列成一个长方形阵列
1234567
(1)用一个矩形任意圈出3行2列6个数,
891011121314如果圈出的6个数之和为57,这6个
15161718192021数分别是多少?
22232425262728
(2)用一个正方形框出16个数,要使
…………这16个数之和分别等于
1988;
2080
99599699799899910001001
三、等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:
②原料体积=成品体积。
1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是45000
.求原来正方形铁皮的边长。
2、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?
3、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。
求锻造后的圆钢的长。
4、
用长7.2m的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m。
求窗的高和宽。
(不考虑木料加工时损耗)
5、鱼儿离不开水,用一个底面半径为20厘米,高为45厘米的圆柱形的塑料桶给一个长方形的玻璃养鱼缸倒水,养鱼缸的长为120厘米、宽为40厘米、高为1米,将满满一桶水倒下去,鱼缸里的水会升高多少?
6、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
四、利润率问题。
其数量关系是:
利润=售价-进价,利润率=
100%,售价=标价×
折扣率,注意打几折销售就是按原价的十分之几出售。
1、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:
“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?
2、一种商品,甲提出按原价降低10元后卖掉,用售价的10%作积累;
乙提出将原价降低20元卖掉,用售价的20%仍做积累,经测算两种积累一样多.则这种商品的原价是多少?
3、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?
4、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
5、某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?
这二件衣服的成本价会一样吗?
算一算
五、调配问题
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
这类问题要搞清人数的变化。
1、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?
2、甲乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;
如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
3、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
4、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
5某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
6、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?
六、行程问题。
(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)
要掌握行程中的基本关系:
时间。
相遇问题(相向而行),这类问题的相等关系是:
甲走的路程+乙走的路程=全路程
追及问题(同向而行),这类问题的等量关系是:
1同时不同地:
甲的时间=乙的时间甲走的路程-乙走的路程=原来甲、乙相距的路程
2同地不同时;
甲的时间=乙的时间-时间差甲的路程=乙的路程
环形跑道上的相遇和追及问题:
同地反向而行的等量关系是两人走的路程和=一圈的路程;
同地同向而行的等量关系是两人所走的路程差=一圈的路程。
船(飞机)航行问题:
顺水(风)速度=静水(无风)中速度+水(风)流速度;
逆水(风)速度=静水(无风)中速度-水(风)流速度。
车上(离)桥问题:
①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。
②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个成长
③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长
④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长
1、A、B两地相距150千米。
一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?
2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?
3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?
4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?
5、火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。
七、银行储蓄问题。
注意利率有日利率、月利率和年利率,年利率=月利率×
12=日利率×
365。
本息和=本金+_____=本金+_____×
_____×
_____=(1+_____×
_____)×
本金(不考虑利息税)
(1-_____)(考虑利息税)
1、张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券20000元,若在2003年7月8日可获得利息数为2790元,则这种国库券的年利率是多少?
2、小明的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买以一只价值576元的CD机,问小明爸爸前年存了多少钱?
3、教育储蓄年利率为1.98%,免征利息税,某企业发行的债券月利率为2.15‰,但要征收20%的利息税,为获取更大回报,投资者应悬着哪一种储蓄呢?
某人存入28000元,一年到期后可以多收益多少元?
4、肖青的妈妈前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少?
(精确到0.01%)
5、某人将20000元钱分成两部分,按两种不同方式存入银行,其中10000元按活期方式存一年,另10000元按定期存一年,一年后共取回21044元,又已知定期一年存款约利率为0.63%,求活期存款月利率是多少?
八.工程问题
1.一件工程,甲、乙、丙队单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程?
2.水池有一个进水管,6小时可注满空池,池底有一个出水管,8小时可放完满池的水,如果同时打开进水管和出水管,那么多少小时可以把空池注满?
3.某地下管道由甲队单独铺设需要3天完成,乙队单独铺设要5天完成,甲队铺设了1/5的工作量后,为了加快进度,乙队加入,从另一端铺设,问管道铺好,乙队做了多少天?
4、一件工程,甲、乙、丙队单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程
练习:
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,
≈3.14).
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:
3:
5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?
6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?
应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
答案
1.解:
设甲、乙一起做还需x小时才能完成工作.
根据题意,得
+(
+
)x=1
解这个方程,得x=
=2小时12分
答:
甲、乙一起做还需2小时12分才能完成工作.
2.解:
设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×
(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
3年前兄的年龄是弟的年龄的2倍.
(点拨:
-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:
设圆柱形水桶的高为x毫米,依题意,得
·
(
)2x=300×
300×
80
x≈229.3
圆柱形水桶的高约为229.3毫米.
4.解:
设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为
分.
过完第二铁桥所需的时间为
依题意,可列出方程
=
解方程x+50=2x-50
得x=100
∴2x-50=2×
100-50=150
第一铁桥长100米,第二铁桥长150米.
5.解:
设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:
设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×
5x+24×
4(16-x)=1440
解得x=6
这一天有6名工人加工甲种零件.
7.解:
(1)由题意,得
0.4a+(84-a)×
0.40×
70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×
60+(x-60)×
70%=0.36x
解得x=90
所以0.36×
90=32.40(元)
九月份共用电90千瓦时,应交电费32.40元.
8.解:
按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:
一是购A,B两种电视机25台;
二是购A种电视机35台,C种电视机15台.
(2)若选择
(1)中的方案①,可获利
150×
25+250×
15=8750(元)
若选择
(1)中的方案②,可获利
35+250×
15=9000(元)
9000>
8750故为了获利最多,选择第二种方案.