微生物知识点Word文档格式.docx

上传人:b****5 文档编号:20509945 上传时间:2023-01-23 格式:DOCX 页数:22 大小:53.46KB
下载 相关 举报
微生物知识点Word文档格式.docx_第1页
第1页 / 共22页
微生物知识点Word文档格式.docx_第2页
第2页 / 共22页
微生物知识点Word文档格式.docx_第3页
第3页 / 共22页
微生物知识点Word文档格式.docx_第4页
第4页 / 共22页
微生物知识点Word文档格式.docx_第5页
第5页 / 共22页
点击查看更多>>
下载资源
资源描述

微生物知识点Word文档格式.docx

《微生物知识点Word文档格式.docx》由会员分享,可在线阅读,更多相关《微生物知识点Word文档格式.docx(22页珍藏版)》请在冰豆网上搜索。

微生物知识点Word文档格式.docx

第1章原核生物的形态、构造和功能

第1节细菌

1.细菌:

结构简单、种类繁多、主要以二分裂繁殖、水生性较强的单细胞原核微生物

2.细菌的形态:

基本上只有球状、杆状、螺旋状三大类,仅少数为其他形状,丝状、三角形、方形、圆盘形等

球菌:

根据其细胞分裂时形成不同的空间排列方式分为:

单球菌、双球菌、四联球菌、八叠球菌、链球菌和葡萄球菌等

杆菌最为常见,球菌次之,螺旋状的最少

螺旋菌:

螺旋不足一环者为弧菌,满2~6环的小型、坚硬的螺旋状细菌为螺菌

3.细菌大小单位:

微米μm球菌(直径)、杆菌(长×

宽)、螺旋菌(弯曲程度)

4.测量细菌大小的方法:

显微镜测微尺直接算、显微照相后根据放大倍数进行测算

5.细菌个体小、透明→需要染色

6.革兰氏染色步骤:

①涂片固定

②结晶紫初染----1分钟,水洗烘干

③碘液媒染------1分钟,水洗烘干

④95%酒精脱色---30秒~45秒,水洗烘干

⑤蕃红复染---------1分钟,水洗烘干

⑥镜检--------------紫色阳(有芽孢的菌)红色阴

7.大肠杆菌阴E.coli

枯草芽孢杆菌阳B.subtilis

金黄色葡萄球菌阳S.aureus

8.细菌构造:

一般构造:

细胞壁、细胞膜、细胞质、核区等

特殊构造:

鞭毛、菌毛、性菌毛、糖被(包括荚膜和黏液层)和芽孢等

一般构造

9.细胞壁:

主要成分肽聚糖(肽(四肽尾和肽桥两种)和聚糖(N-乙酰葡萄胺和N-乙酰胞壁酸两种单糖相互间隔连接成的长链))

10.G+细胞壁的特点:

肽聚糖多厚(60%~95%),特有磷壁酸(10%~30%)

G-细胞壁的特点:

肽聚糖少薄,特有外壁层(脂外层)

古生菌(又称古细菌,包括产甲烷菌及大多数嗜极菌)细胞壁:

不含真正的肽聚糖,有些含假肽聚糖或多糖、糖蛋白、蛋白质

缺壁细菌:

自发缺壁突变:

L型细菌(实验室或宿主体内通过自发突变而形成的遗传性稳定的细胞壁缺损菌株)

人工方法去壁:

彻底除尽的称原生质体(G+最易形成)

部分去除的称球状体

支原体(自然界长期进化中形成)

11.抗生素对细菌的影响:

①青霉素:

作用于肽桥(连接两个肽尾)

②溶菌酶:

作用于β-1,4糖苷键(连接两个双糖单位)它们都抑制或杀死细菌,对G+作用明显

12.革兰氏染色机理:

G+和G-细菌主要由于其细胞壁化学成分的差异而引起了物理特性(脱色能力)的不同,正是由于这一物理特性的不同才决定了最终染色反应的不同。

通过结晶紫初染和碘液媒染后,在细菌的细胞壁以内可形成不溶于水的结晶紫与碘的复合物。

G+细胞壁厚、肽聚糖致密,不含类脂,脱色剂乙醇处理后,失水而使网孔缩小,将复合物牢牢锁在壁内,使其保持紫色G-细胞壁薄、外膜层类脂含量高、肽聚糖疏松,脱色剂乙醇处理,复合物溶出,细胞无色,蕃红复染呈现红色

13.细胞膜:

一层紧贴在细胞壁内侧,包围着细胞质的柔软、脆弱、富有弹性的半透性薄膜,厚7~8纳米,由磷脂(20%~30%)和蛋白质组成(50%~70%)

与细胞膜相关的结构:

间体:

一种由细胞膜内褶而形成的囊状结构,其内充满着层状或管状的泡囊。

多见于G+

14.细胞质:

被细胞膜包围的除核区以外的一切半透明、胶体状、颗粒状物质的总称。

与真核相比,原核细胞质不流动。

15.核区:

原核生物所特有的无核膜包裹、无固定形态的原始细胞核。

富尔根染色法可见到呈紫色形态不定的核区

特殊构造

16.糖被:

包被于某些细菌细胞壁外的一层厚度不定的富含水分的透明胶状物质。

 

层次厚:

(大)荚膜

17.

在壁上有固定层次

包裹在单个细胞上层次薄:

微荚膜

松散,未固定在壁上:

黏液层

糖被

包裹在细胞群上:

菌胶团

18.荚膜含水量很高,炭黑墨水对产荚膜细菌进行负染色(背景染色),光镜下可见,黏液层无此特性

19.糖被的一般成分是多糖,少数是蛋白质或多肽,也有多糖与多肽复合型的作用:

保护/贮藏养料/作为透性屏障和离子交换系统/表面附着作用科学研究和生产实践中的应用一,菌种鉴定二,用作药物和生化试剂,代血浆三,工业原料,黄原胶四,污水的生物处理

20.鞭毛:

蛋白质附属物,运动器官

判断鞭毛的有无:

电子显微镜直接观察光学显微镜鞭毛染色

半固体穿刺培养法

21.菌毛:

黏附作用,与鞭毛相比,细、短、数量多

22.芽孢(不被染色):

某些细菌在生长发育后期,细胞内形成的一个圆形或椭圆形、厚壁、含水量低、抗逆性强(抗高温)的休眠构造。

芽孢无繁殖功能。

芽孢的有无、形态、大小和着生位置是细菌分类和鉴定的重要指标。

罐头食品以杀死肉毒梭状芽胞杆菌为标准121℃20~70min

湿热灭菌以杀死嗜热脂肪芽孢杆菌为标准121℃15~30min

芽孢可能的耐热机制:

①含水量极低,结合水比例高

②特殊成分:

吡啶—2,6二羧酸钙(DPA—Ca)

③耐热酶

22.伴孢晶体:

苏云金芽孢杆菌(简称Bt)生物农药,害虫吞食伴胞晶体后,肠内溶解释放毒素,细胞膨胀死亡

细菌的繁殖

1.裂殖:

二分裂三分裂复分裂

芽殖:

芽生细菌

细菌的群体形态

1.菌落:

在固体培养基上以母细胞为中心的一堆肉眼可见的,有一定形态、构造等特征的子细胞集团。

2.菌苔:

把大量分散的纯种细胞密集的接种在固体培养基的较大表面积上,结果长出的大量菌落相互连成一片,就是菌苔

3.共同特征:

湿润、黏稠、易挑取、质地均匀以及菌落各部位颜色一致,臭味

2.大肠杆菌和枯草芽孢杆菌区分:

显微观察,大肠无芽孢

3.在液体培养基上的群体形态:

多数混浊生长,部分沉淀,表面生长

第2节放线菌

1.放线菌:

一类主要呈菌丝状生长和以孢子繁殖的陆生性较强的原核生物G+

链霉菌属于放线菌大量的种类繁多的抗生素90%由链霉菌产生

放线菌是许多酶、维生素等的产生菌并且在甾体转化、石油脱蜡和污水处理中有重要应用,绝大多数属有益菌

2.根据功能和形态分类,菌丝分为基内菌丝体(营养菌丝)、气生菌丝、孢子丝

3.

4.

5.

6.自然条件下,多数放线菌借助各种孢子繁殖

分生孢子:

最常见

借孢子孢囊孢子无鞭毛

放线菌繁殖方式有鞭毛

基内菌丝断裂

借菌丝

任何菌丝断裂

4.在固体培养基上:

多、干燥、致密、皱、小而不蔓延、不挑起、表面有放射状沟纹泥腥味典型(链霉菌、诺卡氏菌)

第3节蓝细菌

1.蓝细菌:

一类进化历史悠久,G-,无鞭毛,含叶绿素a,进行光合作用的原核生物,分布广,“先锋生物”,形态多样,光趋避运动,细胞质有气泡,导致漂浮

2.无性繁殖,作用:

食用(螺旋菌),固氮,导致水体富营养化,海洋赤潮和湖泊水华

第四节支原体、立克次氏体和衣原体

1.支原体、立克次氏体和衣原体是三类同属G-的代谢能力差、主要营细胞内寄生的小型原核生物。

寄生性逐步增强,是介于细菌与病毒间

的一类原核生物

2.支原体:

一类天然无细胞壁,介于独立生活和细胞内寄生生活间的最小型原核生物固体培养基上呈油煎蛋状对抑制蛋白质生物合成的抗生素(四环素,红霉素)和破坏含甾体的细胞膜结构的抗生素(两性霉素,制霉菌素)敏感

3.立克次氏体:

一类专性寄生于真核细胞内的G-原核生物与支原体区别:

有细胞壁,不能独立生活与衣原体的区别在于其细胞较大、无滤过性和存在产能代谢系统对四环素,青霉素敏感

4.衣原体:

一类在真核细胞内营专性能量寄生的小型G-原核生物

具有感染力的细胞称为原体无感染力的细胞称为实体

对红霉素,氯霉素,四环素敏感

第2章真核微生物的形态、构造和功能

第一节真核微生物概述

1.真核生物:

一大类进化程度高,细胞核具有核膜、能进行有丝分裂、细胞质中存在线粒体和多种细胞器的生物。

主要包括植物界的微藻,动物界的原生动物,菌物界的真菌

2.真菌是最重要的真核微生物:

其特点:

无叶绿素,不能进行光合作用

一般具有发达的菌丝体

细胞壁多数含几丁质(壳多糖)

营养方式为异养吸收型

以产生大量无性和(或)有性孢子的方式进行繁殖

陆生性较强

第2节酵母菌

1.酵母菌:

通俗名称,泛指能发酵糖类的各种单细胞真菌特点:

个体一般以单细胞非菌丝状态存在多数芽殖发酵糖类产能细胞壁常含甘露聚糖和葡聚糖生活在含糖量较高、酸度较大的水生环境中

2.酵母菌分布很广,主要偏酸含糖环境中,水果蔬菜蜜饯果园土壤第一种家养微生物,发酵,石油及油品的脱蜡,单细胞蛋白,生化药物,基因工程“工程菌”,少数引起人和动物的疾病

3.酵母菌的细胞直径约为细菌的10倍,是典型的真核微生物,形态有球状、卵圆状、椭圆状、柱状和香肠状等,酿酒酵母S.cerevisiae

4.细胞壁呈“三明治”状,外层为甘露聚糖,内层为葡聚糖,葡聚糖是赋予细胞壁以机械强度的主要成分

5.只进行无性繁殖的酵母称为“假酵母”,具有有性生殖的酵母称为“真酵母”

6.无性繁殖一,芽殖最常见的一种繁殖方式长大的子细胞与母细胞不分离,这种藕节状的细胞串称为假菌丝如果细胞相连,且其间相连的面积和细胞直径一致,这种竹节状的细胞串称为真菌丝

成熟后,两者分离,母细胞上留下一个芽痕,子细胞相应的留下蒂痕,任何细胞蒂痕仅一个,芽痕有一至数十个(最多21),可以测细胞年龄

二,裂殖少数酵母,如裂殖酵母属,具有与细菌相似的二分裂繁殖方式三,产生无性孢子

7.有性繁殖酵母菌是以形成子囊和子囊孢子的方式进行有性生殖的

8.酵母菌的生活史(生活周期):

一.营养体既能以单倍体存在也能以二倍体形式存在酿酒酵母二.营养体只能以单倍体形式存在八孢裂殖酵母三.营养体只能以二倍体形式存在路德类酵母

9.酵母菌的菌落:

大而厚,圆形光滑湿润,黏稠,颜色单调,常见灰白色乳白色土黄色红色酒香味

10.单细胞蛋白SCP:

又称微生物菌体蛋白,利用发酵法培养微生物而获得的菌体蛋白,生产蛋白的生物大多数是单细胞或丝状微生物个体,而不是多细胞复杂的生物。

SCP要求:

食用前先去除大量的核酸,在最后的产品生产过程中,所有的介质和原料都必须是安全无毒的;

必须可口,易消化吸收;

必须有高营养价值,成本低廉

用微生物生产scp的优点:

①在最佳条件下,微生物能以惊人的速率生长,一些微生物的生产量每隔0.5~1小时能加倍

②微生物个体比动物和植物更容易进行遗传操作,更宜于大规模筛选高生长率的个体

③微生物有相当高的蛋白含量,蛋白质的营养价值高

④能在相对小的发酵反应器中大量培养,不依赖气候

⑤微生物的培养基来源很广泛低廉,特别是利用废料作原料

11.

菌落特点

细菌

酵母菌

相同

湿润黏稠易挑取

不同

小、颜色各样、臭味

大、颜色单调、酒香

第三节丝状真菌——霉菌

1.霉菌的单位,菌丝由许多菌丝相互交织而成的一个菌丝基团称菌丝体,分营养菌丝体和气生菌丝体两类,这两类菌丝在长期的进化过程中,因其自身的生理功能和对不同环境的高度适应,已发展出各种特化的构造(假根、匍匐菌丝)

2.无隔膜菌丝:

毛霉mucor、根霉rhizopus

有隔膜菌丝:

青霉penicillium、曲霉aspergillus

青霉、曲霉、毛霉、根霉简图(略)

3.气生菌丝体主要特化成各种形态的子实体。

青霉和曲霉的气生菌丝特化为分生孢子头,毛霉和根霉特化为孢子囊

4.真菌在液体培养基中进行通气搅拌或振荡培养时,会产生菌丝球

5.真菌的繁殖能力极强,主要通过产生大量无性孢子或有性孢子来完成

6.无性孢子:

孢囊孢子(根霉和毛霉)、分生孢子(最常见曲霉和青霉)、节孢子、厚垣孢子

有性孢子:

卵孢子、接合孢子(根霉毛霉)、子囊孢子、担孢子

7.霉菌菌落形态较大、质地疏松、外观干燥、不透明、呈现或松或紧的蛛网状、绒毛状、棉絮状;

菌落与培养基间的连接紧密或不紧密,不易挑取,孢子和菌丝易被沾起,菌落正面与反面的颜色、构造以及边缘与中心的颜色、构造常不一致

8.菌丝状微生物:

菌落

放线菌

霉菌

干燥不透明菌落正反面颜色一般不同

小而紧密与培养基牢固结合泥腥味

大而疏松或大而致密、与培养基结合松(少部分紧)霉味

第4节产大型子实体的真菌——蕈菌

1.冬虫夏草:

是麦角菌科真菌冬虫夏草寄生在蝙蝠蛾科昆虫幼虫上的子座及幼虫尸体的复合体,是一种传统的名贵滋补中药材,有调节免疫系统功能、抗肿瘤、抗疲劳等多种功效。

第3章病毒和亚病毒因子

第1节病毒

1.病毒:

形体微小、结构简单、具有超级寄生性、只含一种核酸、必须在电子显微镜下才能观察到的一类非细胞形态的微生物对干扰素敏感

2.成熟、具侵染力位于细胞外环境中的单个病毒颗粒称为毒粒或病毒粒子基本成分是蛋白质和核酸

3.核衣壳是任何病毒都具有的基本结构,核衣壳外被一层含蛋白质或糖蛋白的类脂双层膜覆盖着,这层膜叫包膜,有的包膜上长有刺突等附属物,致病力更强

4.衣壳粒:

电镜下可见最小单位,若干个衣壳粒组成衣壳,衣壳和核酸组成核衣壳

5.病毒的对称体制有两种:

螺旋对称、二十面体对称、复合对称。

形状:

动物病毒球状、植物病毒杆状(TMV)、噬菌体(在细菌体内)蝌蚪状

6.噬菌斑在菌苔表面

7.原核生物的病毒:

噬菌体,其繁殖分为五个阶段:

吸附、侵入、增殖、成熟、裂解

吸附:

尾丝吸附,基板固定

侵入:

注射式进入,溶菌酶水解细胞壁肽聚糖,核酸进入

增殖:

核酸的复制和蛋白质的生物合成

成熟:

头——颈——尾

裂解:

原因:

溶菌酶、胞内机械压力增大导致宿主裂解。

另一种表面上与此相似的现象:

自外裂解:

是指大量噬菌体吸附在同一宿主细胞表面并释放众多的溶菌酶,最终因外在的原因导致细胞裂解。

上述增殖的全过程是很快的,例如:

E.coliT系噬菌体在合适温度等条件下仅为15~25min,平均每一宿主细胞裂解后产生的子代噬菌体数称作裂解量,不同的噬菌体有所不同。

T2为150左右,T4约为100

8.一步生长曲线:

定量描述烈性噬菌体生长规律的实验曲线。

分为潜伏期、裂解期、平稳期。

可反映每种噬菌体的3个最重要的特征参数:

潜伏期和裂解期的长短以及裂解量的大小

9.烈性噬菌体:

大部分噬菌体侵入寄主细胞后,引起寄主细胞的代谢改变,在寄主细胞内复制其核酸、蛋白质,装配成新的噬菌体,最终使寄主细胞破裂而释放大量子代噬菌体,这类噬菌体称为烈性噬菌体

温和噬菌体:

其基因组能与宿主菌基因组整合,并随细胞分裂传至子代细菌的基因组中,侵染后不立即引起细菌裂解的噬菌体。

含有温和噬菌体核酸的细菌叫溶源性细菌。

溶源性:

温和噬菌体感染细胞后不能完成复制循环,噬菌体基因组长期存在于宿主细胞内,没有成熟噬菌体产生这一现象称作溶源性现象

10.人类和脊椎动物病毒:

已知与人类健康有关的病毒超过300种,与其他脊椎动物有关的病毒超过900种,,目前,人类的传染病有70%~80%是由病毒引起的。

11.新显病毒:

那些以往局部低水平感染的病毒或具有种间屏障的病毒将其寄主范围扩大到了别的物种,引起了大范围的人类传染性疾病(埃博拉、拉沙、艾滋、SARS、禽流感)

12.防治方法:

接种疫苗、生物制剂、中药防治、干扰素

第2节亚病毒因子

1.亚病毒:

包括类病毒、拟病毒、朊病毒

2.类病毒:

一类只含RNA,单链RNA,在马铃薯纺锤形块茎病中发现

3.拟病毒:

不能独立侵染,与其“共生”的真病毒又称辅助病毒,拟病毒是它的“卫星”

4.朊病毒:

只含蛋白质无核酸,又称蛋白质侵染子,疯牛病

第3节病毒与实践

1.噬菌体与发酵产业:

造成倒罐

昆虫病毒用于生物防治

病毒在基因工程中的应用

第四章微生物的营养和培养基

第1节微生物的六类营养要素

1.细胞重量(湿重):

水75%--90%

干物质10%--25%无机盐10%碳水化合物

有机物90%蛋白质

脂肪

DNA或RNA等

2.微生物六类营养素:

碳源、氮源、能源、生长因子、无机盐、水

3.营养体的游离水:

结合水=4:

1

4.碳源:

满足微生物生长所需碳元素的营养源

异养微生物:

必须利用有机碳源的微生物,为数众多

自养微生物:

以无机碳源作唯一或主要碳源的微生物,种类较少

有机碳源:

糖类、蛋白质、脂肪、有机酸

无机碳源:

二氧化碳、碳酸根离子

良好碳源:

葡萄糖、果糖、麦芽糖、淀粉

生产中廉价碳源:

玉米粉、麸皮、米糠、酒糟

对一切异养微生物来说,碳源同时又兼作能源

废水处理:

诺卡氏菌降解含氰的废水

5.氮源:

为微生物生长提供氮来源的物质

有机氮源:

蛋白质、蛋白胨、氨基酸

无机氮源:

铵盐、硝酸盐、空气中氮气

实验室常用:

牛肉膏、蛋白胨

生产常用:

鱼粉、蚕蛹粉、黄豆饼粉、尿素、玉米浆、花生饼粉

6.氨基酸自养型生物:

能把尿素铵盐硝酸盐甚至氮气等简单氮源自行合成所需要的一切氨基酸

氨基酸异养型生物:

需要从外界吸收现成的氨基酸作氮源的微生物

7.速效氮源:

有利于机体生长

迟效氮源:

有利于代谢产物的生成

8.能源:

为微生物生命活动提供最初能量来源的营养物质或辐射能

化能营养型有机物:

化能异养微生物的能源(同碳源)

能源谱无机物:

化能自养微生物的能源(不同于碳源)

光能营养型:

光能自养和光能异养微生物的能源

9.化能自养微生物的能源:

还原态的无机物质,如NH4+、NO2-、S、H2、H2S、Fe2+等,一般是原核生物,包括亚硝酸细菌、硝酸细菌、硫化细菌、硫细菌、氢细菌、铁细菌

光辐射能是单功能营养物(能源),还原态的无机物NH4+是双功能营养物(能源、氮源),氨基酸类是三功能营养物(碳源、氮源、能源)

10.生长因子:

生物体必需,不能用简单的碳氮源自行合成的微量有机物

广义的生长因子:

维生素、碱基、卟啉及其衍生物、甾醇、胺类、C4~C6的分支或直链脂肪酸

狭义的生长因子:

维生素(Vc、Vk)

11.生长因子自养型微生物:

不需要从外界吸收

生长因子异养型微生物:

需要从外界吸收多种生长因子

生长因子含量丰富的天然物质:

酵母膏、玉米浆、肝浸液

12.无机盐:

主要可为微生物提供除碳、氮源以外的各种重要元素

大量元素:

浓度10^-3—10^-4mol/l如P、S、K、Mg、Na、Ca、Fe

微量元素:

浓度10^-6—10^-8mol/l如Cu、Zn、Mn、Mo、Co等

生理作用:

细胞结构组分、生理调节、转移能量、酶的激活剂或辅酶因子

一般所需无机盐:

硫酸盐、磷酸盐、氯化物以及含钠、钾、镁、铁等金属元素的化合物

13.水:

微生物细胞含水量很高,细菌酵母菌和霉菌的营养体分别含80%、75%、85%左右,霉菌孢子约含39%的水,细菌芽孢核心部分含水量低于30%

第2节微生物的营养类型

1.分类依据:

能源和碳源不同。

光能自养型:

蓝细菌、光合细菌、藻类

光能异养型:

红螺细菌(产单细胞蛋白)可做碳源的有机物:

甲酸、甲醇、乙酸、丁酸、异丙醇、丙酮酸和乳酸等

化能自养型:

只存在于微生物中,可在完全无机及无光的环境中生长,以二氧化碳为唯一碳源,如氢细菌、硫化细菌、硝化细菌、铁细菌等

化能异养型(最常见普遍):

能源和碳源同为有机物,绝大多数原核生物、全部真菌

2.兼养型微生物

第3节营养物质进入细胞的方式

1.细胞膜:

半透性薄膜选择吸收作用

2.影响营养物质进出细胞的因素:

①营养物质本身的性质,如相对分子质量、溶解性、电负性、极性等都影响营养物质进入细胞的难易程度②微生物所处的环境,如温度、PH、离子强度等③微生物细胞的通透屏障,主要是黏液层、细胞壁和细胞膜等结构

3.细胞膜运送营养物质有四种方式:

单纯扩散、促进扩散、主动运送、基团移位

4.单纯扩散:

浓度由高到低不需能量不需载体蛋白

主要运输氧气、二氧化碳、乙醇、甘油和某些氨基酸分子

5.促进扩散:

浓度由高到低不需能量需载体蛋白

载体蛋白可称作渗透酶、移位酶或移位蛋白,通过诱导产生,专一性

如酿酒酵母对糖类、氨基酸、维生素的吸收大肠杆菌、芽孢杆菌属对甘油的吸收

6.主动运送(最常见最主要):

浓度由低到高需能量需载体蛋白

氨基酸、某些糖(乳糖、麦芽糖、葡萄糖、蜜二糖等)、钠离子、钾离子、有机离子等

7.基团移位:

浓度由高到低被运送物质结构发生改变需能量需载体

营养物质在转运过程中受到化学修饰后进入细胞的一种运输方式

化学修饰的实质就是磷酸化(PEP介导),主要存在于厌氧菌和兼性厌氧菌运输葡萄糖、甘露糖、果糖、乳糖、糖衍生物、碱基、脂肪酸等

第4节培养基

1.培养基:

人工配制的、适合不同微生物生长繁殖或产生代谢产物的混合营养基质。

绝大多数腐生性微生物和部分共生或寄生性微生物都可在人工培养基上生长,只有少数称作难养菌的寄生或共生微生物(类支原体)在人工培养基上难于生长。

培养基条件:

合适的营养素种类,合适的营养素比例

2.选用和设计培养基时,遵循的四个原则:

目的明确,营养协调,理化适宜,经济节约

目的明确:

自养菌还是异养菌,科研还是生产(实验室不过多计算成本),生产上考虑种子培养基还是发酵培养基

营养协调:

微生物细胞内各种成分间有一较稳定的比例,化能异养型,水分、C+能源、N源、大量元素、生长因子大体上存在着10倍序列的递减趋势

碳氮比:

微生物培养基中碳源的碳原子摩尔数与氮源中氮原子摩尔数之比C素N荤

碳氮比升高,氮源缺乏,菌体生长不好,有些菌产酸过快生长受抑制

碳氮比降低,氮源丰富,菌体生长旺盛,过早衰老,菌体自溶

真菌需碳氮比较高,细菌尤其是动物病原菌需碳氮比较低的培养基种子培养基,碳氮比低,种子营养丰富氮高,发酵培养基碳氮比高

理化适宜:

指培养基的PH、渗透压、水活度和氧化还原电势等物理化学条件较为适宜

PH:

放线菌(强)细菌碱性

酵母菌霉菌酸性

刚配出来的培养基偏酸性,NaOH调PH

PH内源调节:

磷酸缓冲液调节碳酸钙作“备用碱”调节

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1