工业催化文献综述.docx

上传人:b****2 文档编号:2050780 上传时间:2022-10-26 格式:DOCX 页数:8 大小:24.62KB
下载 相关 举报
工业催化文献综述.docx_第1页
第1页 / 共8页
工业催化文献综述.docx_第2页
第2页 / 共8页
工业催化文献综述.docx_第3页
第3页 / 共8页
工业催化文献综述.docx_第4页
第4页 / 共8页
工业催化文献综述.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

工业催化文献综述.docx

《工业催化文献综述.docx》由会员分享,可在线阅读,更多相关《工业催化文献综述.docx(8页珍藏版)》请在冰豆网上搜索。

工业催化文献综述.docx

工业催化文献综述

工业催化文献综述

 

固体酸催化剂的发展及应用

 

专业:

化学工程与工艺

班级:

学生学号:

学生姓名:

完成时间:

 

1

 

一、引言

催化剂(catalyst):

是一种能够改变化学反应速度,而它本身又不参与最终产物的物质。

随着环境意识的加强以及环境保护要求的日益严格,,液体催化剂已完全满足不了化工产品的发展要求,然而新型固体酸催化剂却弥补了当前的一些不足,固体酸催化剂已成为催化化学的一个研究热点。

与液体酸催化剂相比,固体酸催化反应具有明显的优势,固体酸催化在工艺上容易实现连续生产,不存在产物与催化剂的分离及对设备的腐蚀等问题。

并且固体酸催化剂的活性高,可在高温下反应,能大大提高生产效率。

还可扩大酸催化剂的应用领域,易于与其他单元过程耦合形成集成过程,节约能源和资源。

关键词:

固体酸催化剂

摘要:

通过固体孙催化剂在有机合成反应中的应用,说明固体酸催化剂的优越性,介绍了固体酸催化剂技术应用的进展,指出了固体酸催化剂应用存在的主要问题

1固体酸催化剂的定义及分类

1.1定义

一般而言,固体酸可理解为凡能碱性指示剂改变颜色的固体,或是凡能化学吸附碱性物质的固体。

按照布朗斯泰德和路易斯的定义,则固体酸是具有给出质子或接受电子对能力的固体。

固体酸是催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。

它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。

这类催化剂广泛应用于离子型机理的催化反应,种类很多。

此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。

1.2固体酸的分类

(1)固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土

(2)氧化物简单Al2O3,SiO2,B2O3,Nb2O5

复合Al2O3-SiO2,Al2O3/B2O3

(3)硫化物CdSZnS

2

(4)金属磷酸盐AlPO4,BPO硫酸盐Fe2(SO4)3,Al2(SO4)3,CuSO4

(5)沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石丝光沸石,非沸石分子筛:

AlPOSAPO系列

(6)杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40

(7)阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H

(8)天然粘土矿高岭土,膨润土,蒙脱土

(9)固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3

二、主题

1各类固体酸催化剂的研究近况

以下主要是综述了固体超强酸(H0<-11.94)的研究发展状况,包括了单组分固体超强酸催化剂和多组分复合固体酸催化剂的研究。

1.1单组分固体超强酸

苏文悦、陈亦琳等人[1]对SO2-4/TiO2进行了研究,发现SO2-4/TiO2固体酸可用于光催化降解溴代甲烷。

当H2SO4浸渍液浓度为1mol/L时,制备所得的SO2-4/TiO2酸性最强(H0<-12.14),具有超强酸性和最高的光催化活性,且比在相同反应条件下的TiO2的光催化活性提高了2~10倍。

任立国等人[2]制备了PO3-4/TiO2固体酸,对其进行了表征,并催化了乙酰乙酸乙酯和乙二醇的缩酮化反应。

研究结果表明,经PO3-4改性后的TiO2在425!

~575!

焙烧可形成表面同时存在L酸中心和B酸中心的固体超强酸。

在缩酮化反应中,PO3-4质量分数为7.5%、焙烧温度为500!

的固体酸催化剂具有最高催化活性。

于荟、朱银华等人[3]采用等体积浸渍法制备了新型晶须状介孔SO2-4/TiO2固体酸,以其为催化剂催化乙酸和正丁醇的酯化反应。

经一系列物化表征后显示,SO2-4/TiO2固体酸具有纳米级晶粒、晶须状形貌、高比表面积和介孔结构,500!

焙烧时催化剂活性最高。

酯化反应中,在催化剂的投入质量为0.2g、n(正丁醇)/n(乙酸)=1.5、反应时间为3h的条件下,正丁醇转化率可达94%。

1.2多组分复合超强酸

复合其他金属氧化物型李文生,尹双凤等人[4]制备了经高温活化焙烧的B2O3/ZrO2催化剂。

表征后得出,对于700!

活化焙烧的B2O3/ZrO2,B2O3的含量为4.1%比表面最大,而B2O3的含量为8.3%时催化剂表面的总酸量最大。

实验还

3

表明催化剂表面B/Zr原子之比中强酸百分含量间存在顺变关系,而且中强酸中心是催化环己酮肟贝克曼重排的活性中心。

郭锡坤、王小明[5]以-Al2O3为载体,用分步浸渍法制得Cu/ZrO2/S2O2-8/-Al2O3固体酸,用于催化选择还原NO的反应。

实验表明,由于S2O2-8和ZrO2可抑制-Al2O颗粒的烧结及CuAl2O4尖晶石相的生成,且促使催化剂表面B酸中心的形成,在有10%水蒸气存在时NO的最大转化率还能达80.2%。

1.3磁性复合型

常铮、李峰等人[6]利用超声波法制得磁性纳米固体酸催化剂Zr(SO4)2/Fe3O4,并对不同配比的催化剂进行表征。

当Fe3+/Fe2+的摩尔比为5.5,NaOH的浓度为0.1mol/L时,制出的纳米级磁基体磁性相对最强、颗粒大小均匀。

当Zr(SO4)2/Fe3O4的摩尔比降低时,酯化时的催化活性降低,但催化剂的磁性增强,即其回收率增大。

常铮、郭灿雄等人[7]制备出磁性超细固体酸SO2-4-ZrO2/Fe3O4,并用于催化乙酸丁酯的合成反应。

经实验表征后发现,磁基体的平均粒径为40nm,催化剂在650!

条件下焙烧,部分Fe3O4会转化为Fe2O3,使整体磁学性能下降。

但650!

处理的SO2-4-ZrO2/Fe3O4(51)催化剂虽然比表面积降低到60.8m2/g左右,酸性却增强,催化活性也上升。

王君[8]设计合成了SO2-4/ZrO2/Fe3O4/Al2O3、SO2-4/ZrO2/Fe3O4/TiO2、SO2-4/ZrO2/Fe3O4/B2O3和SO2-4/ZrO2/Fe3O4/WO3四种固体酸催化剂,并依次作为合成柠檬酸三丁酯、乙酸乙酯、乙酸丁酯和苹果酯的催化剂。

分析结果显示,Al2O3、TiO2与Fe3O4的引入均能抑制ZrO2(t)向ZrO2(m)转变,有效抑制晶粒生成,提高酸性;B2O3在高温烧结中起钉扎作用,阻碍晶界的移动,同样抑制晶粒生成;WO3与Fe3O4的引入能使ZrO2在较高的焙烧温度下保持ZrO2(t),利于形成酸中心。

1.4复合稀土元素及交联剂负载型

华平、李建华等人[9]合成了稀土复合型的SO2-4/TiO2/La3+固体酸,且用于催化合成马来酸二辛脂。

经考察得出,当Ti/La的物质量之比为61,用于浸渍的硫酸浓度为1.8mol/L时,550!

焙烧的催化剂活性最高,酯化率可达96.9%。

4

陈同云[10]用共沉淀法制得了引入稀土元素钕的固体超强酸SO2-4/ZrO2-Nd2O3,将其用于催化乙酸和甘油的酯化反应。

实验结果显示,-15!

陈化、650!

焙烧、Zr/Nd的物质量之比为1001时,催化剂酸度最强(H0=-16.0),酯化率达95%以上。

低温陈化和Nd的加入使催化剂的酸性增强,并能使ZrO2四方晶相在较宽的温度范围内不发生转化。

郭锡坤、谌宁[11]以累托土为基质,采用四种不同的方法:

(1)向Zr交联剂中引入La;

(2)在未焙烧的Zr-CLR中引入La(3)在焙烧后的Zr-CLR中引入La;(4)先用La与Na-R进行交换再加入Zr交联剂,分别制备了不同的含La的SO2-4改性Zr交联粘土固体酸催化剂。

结果表明,先用La与Na-R进行交换再加入Zr交联剂,或采用La-Zr双组分与累托土交联所得的固体酸L酸酸量增多,酸强度增强。

郭锡坤、张俊豪等人[12]采用溶胶凝胶法制备了Cu/CeO2/SO2-4/Ti-PLIM固体酸催化剂,并且进行表征。

结果表明,钛交联剂能增大交联蒙脱土载体的比表面积,制得的孔径为3~7nm;SO2-4与钛形成螯合双配位结构,促使了B酸中心的形成,酸量提高;Ce还促使了Cu的还原作用。

1.5分子筛负载型

陈静、孙蕊等人[13]采用液相沉积法制备了MCM-41负载S2O2-8/TiO2的固体超强酸,以乙酸和异戊酯的酯化反应考察催化剂的性能。

表征显示,催化剂保持了MCM-41的介孔结构,而且促进了S2O2-8酸中心的形成,得到了Ti/Si的物量比为1、0.5mol/LS2O2-8溶液浸渍5h、550!

下焙烧4h的最佳工艺条件。

肖容华、徐景士[14]利用混合球磨法将ZSM-5分子筛与研细的Zr(OH)4混合研磨至光滑后按15g/mL硫酸浸泡,焙烧后制得SO2-4/ZrO2-ZSM-5超强酸(H0=-12.70)。

m(ZSM-5/ZrO2)=4%,浸渍液H2SO4浓度为1.0mol/L,600!

焙烧3h,为较好的催化剂制备条件。

ZSM-5的引入有利于表面的晶化,增大催化剂的比表面积,使其活性增强。

1.6其他类型固体酸

(1)固体杂多酸固体杂多酸催化剂可分为[15]:

(1)纯杂多酸;

(2)杂多酸盐;(3)负载型杂多酸(盐)三类。

杂多阴离子由不同种类的含氧酸根阴离子缩合而成,杂多酸属于液体酸,具有较强的酸强度。

当质子被碱金属阳离子取代形成盐后可作为固体酸使用。

为避免杂多酸分解,用于制备负载型杂多酸的

5

主要是中性和酸性载体。

典型的杂多酸型催化剂有Keggin、Dawson、Waugh等结构,其主要差别在于中心原子的配位数和配位体的八面体单元的聚集状态不同[16]。

因为此类型固体酸酸性较强,其在酯化、烷基化等方面的应用研究活跃起来。

王广健、刘广卿等人[17]用浸渍法和吸附法制备了负载Keggin杂多酸,并对其进行表征,总结了在重排反应、醇氧化、缩合反应等不同类型催化反应中催化剂失活的原因及影响催化剂水热稳定性的因素。

但杂多酸型催化剂进行均相催化后回收效果不理想。

(2)离子交换树脂离子交换树脂分为两类[18]:

(1)大孔聚苯乙烯磺酸树脂;

(2)全氟磺酸树脂(Nafion)。

前者的酸性一般比后者弱,但酸位数量是前者的5倍。

强酸性离子交换树脂一般具有致密无孔、比表面积小、酸中心利用率低的缺点

王海、王建武等人[19]利用溶胶凝胶法制得中孔孔道纳米固体酸催化剂Nafion/SiO2,其比表面积大大增加,从而使更多的酸中心得到暴露,而其更具有四种强度不同的酸性位。

张凤、蒋晓原等人[20]采用离子交换法制备了ZnCl2改性离子交换树脂,并用于催化乙醇和乙酸酯化。

用0.15%ZnCl2溶液进行离子交换30h所得的催化剂催化性能较好。

改性后离子交换树脂的H+交换容量是原来的1.5倍,表面酸强度增加,在含水体系中能保持较高活性,重复使用性好。

张士真、陈丹云[21]将制备得到的硫酸镓改性离子交换树脂用于催化正丁酸和异戊醇酯化,实验结果显示,该催化剂催化活性高,正丁酸0.1mo,l醇酸物量比为14时,加入1.0g催化剂反应40min,酯的产率可高达90%以上。

而且与反应体系形成非均相物系,易于分离回收

2固体酸催化剂的应用

2.1固体酸催化剂对二甲醚水蒸气重整制氢过程的影响

DME水蒸气重整制氢的反应温度一般在250~400oC,该反应分为两步水解生成甲醇△Hr=+37kJ/mol;甲醇再通过水蒸气重整生成H2和CO2,△Hr=+49kJ/mol.总的反应为:

CH3OCH3+3H2O→6H2+2CO2,△H=+135kJ/mol.因而,DME水解与甲醇重整过程需要DME水解催化剂和甲醇重整催化剂的协同作用.多数研究者认为,DME水解反应是整个重整过程的速控步骤[.

6

根据化学反应的微可性原理,在甲醇脱水制取DME过程中具有良好活性的固体酸催化剂,如H4SiW12O40,SO42−-ZrO2,γ-Al2O3及各类分子筛在DME水

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1