机械传动装置的总体设计Word文档格式.docx

上传人:b****6 文档编号:20506297 上传时间:2023-01-23 格式:DOCX 页数:18 大小:216.58KB
下载 相关 举报
机械传动装置的总体设计Word文档格式.docx_第1页
第1页 / 共18页
机械传动装置的总体设计Word文档格式.docx_第2页
第2页 / 共18页
机械传动装置的总体设计Word文档格式.docx_第3页
第3页 / 共18页
机械传动装置的总体设计Word文档格式.docx_第4页
第4页 / 共18页
机械传动装置的总体设计Word文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

机械传动装置的总体设计Word文档格式.docx

《机械传动装置的总体设计Word文档格式.docx》由会员分享,可在线阅读,更多相关《机械传动装置的总体设计Word文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

机械传动装置的总体设计Word文档格式.docx

3~5

圆锥

2~3

10~40

最大值

5

7

6

8

80

传动效率

许用的线速度/(m/s)

≤25

≤25~30

≤40

6级精度直齿≤l8,非直齿≤36,5级精度达100

≤15~35

外廓尺寸

传动精度

中等

工作平稳性

较差

一般

自锁能力

可有

过载保护作用

使用寿命

缓冲吸振能力

要求制造及安装精度

要求润滑条件

不需

环境适应性

不能接触酸、碱、油类、

爆炸性气体

2.2减速器的类型、特点及应用

减速器是原动机和工作机之间的独立的封闭传动装置。

由于减速器具有结构紧凑、传动效率高、传动准确可靠、使用维护方便等特点,故在各种机械设备中应用甚广。

减速器的种类很多,用以满足各种机械传动的不同要求。

其主要类型、特点及应用如表2-2所示。

为了便于生产和选用,常用减速器已标准化,由专门工厂成批生产。

标准减速器的有关技术资料,可查阅减速器标准或《机械设计手册》。

因受某些条件限制选不到合适型号的标准减速器时,则需自行设计和制造。

设计时可参考标准减速器的主要参数及有关资料,结合具体要求来确定非标准减速器的主要参数和结构。

表2-2减速器的类型、特点及应用

名称

运动简图

推荐传动

比围

特点及应用

单级圆

柱齿轮

减速器

i≤8~10

轮齿可做成直齿、斜齿或人字齿。

直齿用于速度较低(v≤8m/s)或负荷较轻的传动;

斜齿或人字齿用于速度较高或负荷较重的传动。

箱体通常用铸铁做成,有时也采用焊接结构或铸钢件。

轴承通常采用滚动轴承,只在重型或特高速时,才采用滑动轴承。

其他形式的减速器也与此类同

齿

展开式

i=8~60

两级展开式圆柱齿轮减速器的结构简单,但齿轮相对轴承的位置不对称,因此轴应具有较大的刚度。

高速级齿轮应布置在远离转矩输入端,这样,轴在转矩作用下产生的扭转变形,能减弱轴在弯矩作用下产生的弯曲变形所引起的载荷沿齿宽分布的不均匀。

建议用于载荷比较平稳的场合。

高速级做成斜齿,低速级可做成直齿或斜齿

同轴式

减速器长度较短。

两对齿轮浸入油中深度大致相等。

但减速器的轴向尺寸及重量较大;

高速级齿轮的承载能力难于充分利用;

中间轴较长,刚性差,载荷沿齿宽分布不均匀;

仅能有一个输入和输出轴端,限制了传动布置的灵活性

单级锥

齿轮减

速器

i≤6~8

用于输入轴和输出轴两轴线垂直相交的传动,可做成卧式或立式。

由于锥齿轮制造较复杂,仅在传动布置需要时才采用

圆锥-圆

i≤8~40

特点同单级锥齿轮减速器。

锥齿轮应布置在高速级,以使锥齿轮的尺寸不致过大,否则加工困难。

锥齿轮可做成直齿、斜齿或曲线齿,圆柱齿轮可做成直齿或斜齿

i=10~80

蜗杆布置在蜗轮的下边,啮合处的冷却和润滑

都较好,同时蜗杆轴承的润滑也较方便。

但当蜗

杆圆周速度太大时,油的搅动损失较大,一般用于蜗杆圆周速度v<10m/s的情况

蜗杆布置在蜗轮的上边,装拆方便,蜗杆的许

用圆周速度高一些,但蜗杆轴承的润滑不太方便,需采取特殊的结构措施

2.3选择电动机

电动机已经标准化、系列化。

选择电动机时,应按照工作机的要求,选择电动机的类型、结构型式、容量(功率)和转速,并确定型号。

2.3.1电动机类型和结构型式选择

电动机有交流电动机和直流电动机之分,工业上一般都用三相交流电源,因此,无特殊要求一般应选三相交流异步电动机。

最常用的电动机是Y系列自扇冷式笼型三相异步交流电动机。

其结构简单、起动性能较好、工作可靠、效率高、价格低、维护方便,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。

对于需频繁启动、制动和逆转的机器,要求电动机具有转动惯量小、过载能力大,这时应选用YZ型(笼型)或YZR型(绕线性)。

电动机的结构型式,按安装位置不同,有卧式和立式两类。

常用结构型式为卧式封闭型电动机。

2.3.2选择电动机容量

选择电动机容量就是合理确定电动机的额定功率。

电动机的功率与电动机的工作性能和经济性能有直接的关系。

如果所选电动机的功率小于工作要求,则不能保证工作机正常工作,使电动机经常过载而提早损坏;

如果所选电动机的功率过大,则电动机经常不能满载运行,功率因数和效率较低,从而增加电能消耗、造成浪费。

因此,在设计中一定要选择合适的电动机功率。

电动机的功率主要根据工作机的功率来确定。

这类电动机的功率按下述步骤确定:

1.工作机所需功率

工作机所需功率

应由机器工作阻力和运动参数计算确定,可按设计任务书给定的工作机参数(F、v或T、n)计算求得。

式中,

为工作机所需输入功率,单位为kW;

F为带式输送机驱动卷筒的圆周力(即卷筒牵引力),单位为N;

v是输送带速度,单位是m/s;

T为工作机主动轴的输出转矩,单位为N·

m;

为工作机卷筒轴转速,单位是r/min;

是工作机的效率;

D为卷筒直径,单位是mm。

2.电动机的输出功率

考虑传动装置的功率损耗,电动机输出功率为

式中,

为从电动机至工作机主动轴之间的总效率

、…、

分别为传动系统中各传动副、联轴器及各对轴承的效率,其数值见表2-3。

表2-3机械传动的效率概略值

类别

圆柱齿轮

闭式:

0.96~0.98

(7~9级精度)

平带

0.95~0.98

开式:

0.94~0.96

V带

0.94~0.97

圆锥齿轮

(7~8级精度)

滚子链传动

0.90~0.93

轴承

一对

滑动轴承

润滑不良0.94~0.97

0.92~0.95

润滑良好0.97~0.99

自锁

0.40~0.45

滚动轴承

0.98~0.995

单头

0.70~0.75

弹性联轴器

0.99~0.995

双头

0.75~0.82

齿式联轴器

0.99

三头和四头

0.80~0.92

十字沟槽联轴器

0.97~0.99

3.确定电动机额定功率

根据计算出的功率

可选定电动机的额定功率

应使

等于或稍大于

2.3.3电动机转速的选择

同一类型、相同额定功率的电动机具有几种不同的转速。

转速越高的电动机,其尺寸和重量越小,价格越低,效率也越高。

但会使传动装置的总传动比较大,从而使减速器结构尺寸、重量和成本增加。

选用转速低的电动机则情况相反。

因此,应综合考虑各方面的因素,分析比较,权衡利弊,选出合适的电动机转速。

一般多选用同步转速为1500r/min或1000r/min的电动机。

选择电动机转速时,可先根据工作机主动轴转速和传动系统中各级传动的合理传动比围,推算出电动机转速的可选围,即

为电动机转速可选围;

为各级传动比的合理围,见表2-1。

2.3.4确定电动机型号

由选定的电动机类型、结构型式、功率和转速,由有关表格查出电动机型号及其额定功率、满载转速、外形和安装尺寸(如中心高、轴伸及键联接尺寸、机座尺寸)等。

设计传动装置时,一般按实际需要的电动机输出功率

计算,转速则取满载转速。

2.4传动装置的总传动比及其分配

2.4.1计算总传动比

在电动机选定后,由电动机的满载转速

和工作机主动轴的转速

可计算出传动装置应有的总传动比为

传动装置总传动比等于各级传动比的连乘积,即

设计多级传动装置时,需将总传动比分配到各级传动机构。

2.4.2合理分配各级传动比

各级传动比如何取值,是设计中的一个重要问题。

分配传动比时通常应考虑以下几方面:

1)各级传动机构的传动比应在常用围,不应超

过最大值,参见表2-1。

2)应使各级传动的尺寸协调、结构匀称合理,避免

传动件之间相互干涉。

例如,由带传动和齿轮传动组成的

传动装置,带传动的传动比一般应小于齿轮传动的传动比。

如果带传动的传动比过大,会使大带轮半径超过减速器的

中心高,易使大带轮与底座相碰(如图2-1)。

3)应使传动装置尺寸紧凑,重量轻,即有最小的外廓

尺寸和最小的中心距。

4)减速器设计中常使各级大齿轮直径相近,以使大齿轮有相接近的浸油深度,有利于浸油润滑。

以上分配的传动比只是初始值,待有关传动零件参数确定后,再验算传动装置实际传动比是否符合设计任务书的要求。

如果设计要求中没有特别规定工作机转速或速度的误差围,则一般传动装置的传动比误差可按

考虑。

否则应重新分配传动比。

2.5计算传动装置的运动和动力参数

为了进行传动零件的设计计算,需计算传动装置各轴的转速、功率和转矩。

一般按电动机到工作机之间运动顺序逐步推算出各轴的运动和动力参数。

以图2-2所示带式运输机为例,当已知电动机额定功率

、满载转速

、各级传动比及传动效率后,即可计算各轴的转速、功率和转矩。

1.各轴转速n(r/min)

图2-2所示传动装置中各轴转速为

图2-2带式运输机

为电动机的满载转速,单位为r/min;

为I、Ⅱ轴的转速,单位为r/min,

为电动机到I轴的传动比;

为I轴到Ⅱ轴的传动比。

2.各轴输入功率P(kW)

各轴输入功率分别为

为电动机的输出功率,单位为kW;

分别为I轴、Ⅱ轴、III轴的输入功率,单位为kW;

分别为电动机轴与I轴、I轴与Ⅱ轴、Ⅱ轴与III轴间的传动效率。

3.各轴输入转矩T(N·

m)

2.6传动装置总体设计的分析与计算示例

设计题目:

已知带式输送机(如图2-2所示)驱动卷筒的圆周力(牵引力)F=2200N,带速v=1.1mm/s,卷筒直径D=270mm,卷筒效率为0.96,输送机在常温下长期连续工作,载荷较平稳。

要求对该带式输送机传动装置进行总体设计。

解:

1.选择电动机

(1)电动机类型和结构型式

按工作要求和工作条件,选用一般用途的Y型全封闭笼型三相异步电动机。

(2)电动机容量

1)卷筒轴的输出功率

2)电动机输出功率

传动装置的总效率

为从电动机至卷筒轴之间的各传动机构和轴承的效率。

由表2-3查得:

圆柱齿轮传动

弹性联轴器

卷筒轴滑动轴承

(3)确定电动机的转速

卷筒轴工作转速为

由表2-1查得V带传动常用传动比围

,单级圆柱齿轮传动比围

,则电动机转速的可选围为

符合这一围的同步转速为750r/min、1000r/min和1500r/min,再根据计算出的电动机容量,由表16-1查出有三种适用的电动机型号,如下表所示。

方案

电动机

型号

额定功率(kW)

电动机转速(r/min)

传动装置的传动比

同步转速

满载转速

总传动比

齿轮

1

Y100L2-4

3

1500

1420

18.38

3.8

4.84

2

Y132S-6

1000

960

12.34

3.1

3.98

Y132M-8

750

710

9.13

3.04

综合考虑电动机和传动装置的尺寸、重量以及带传动和减速器的传动比,比较三个方案可知:

方案1电动机转速较高,重量和价格较低,但总传动比大,传动装置尺寸较大。

方案3电动机转速低,重量和价格较高,虽然总传动比不大,但因电动机转速低,导致传动装置尺寸较大。

方案2适中,比较适合。

因此选定电动机型号为Y132S-6,所选电动机的额定功率

=3kW,满载转速

=960r/min。

所选电动机的主要外形尺寸和安装尺寸如下表所示。

中心高H

外形尺寸

(AC/2+AD)×

HD

底脚安装尺寸

B

地脚螺栓孔直径K

轴外伸尺寸

E

132

475×

347.5×

315

216×

140

12

38×

2.计算传动装置总传动比和分配各级传动比

(1)传动装置总传动比

(2)分配各级传动比

取V带传动的传动比

,则单级圆柱齿轮减速器的传动比为

所得

值符合单级圆柱齿轮减速器传动比的常用围。

3.计算传动装置的运动和动力参数

(1)各轴转速

电动机轴为0轴,减速器高速轴为I轴,低速轴为Ⅱ轴,各轴转速为

(2)各轴输入功率

Ⅰ轴的输入功率

Ⅱ轴的输入功率

卷筒轴的输入功率

(3)各轴输入转矩

电动机轴的输出转矩

Ⅰ轴的输入转矩

Ⅱ轴的输入转矩

卷筒轴的输入转矩

将计算结果列于下表备用:

轴名

参数

电动机轴

Ⅰ轴

Ⅱ轴

卷筒轴

转速n/(r/min)

输入功率P/kW

输入转矩T/(N·

2.9

28.85

309.7

2.78

85.72

77.8

2.67

327.74

2.62

321.61

传动比i

效率

0.96

0.98

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1