运动控制系统实验指导书Word文件下载.docx

上传人:b****5 文档编号:20494861 上传时间:2023-01-23 格式:DOCX 页数:12 大小:27.78KB
下载 相关 举报
运动控制系统实验指导书Word文件下载.docx_第1页
第1页 / 共12页
运动控制系统实验指导书Word文件下载.docx_第2页
第2页 / 共12页
运动控制系统实验指导书Word文件下载.docx_第3页
第3页 / 共12页
运动控制系统实验指导书Word文件下载.docx_第4页
第4页 / 共12页
运动控制系统实验指导书Word文件下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

运动控制系统实验指导书Word文件下载.docx

《运动控制系统实验指导书Word文件下载.docx》由会员分享,可在线阅读,更多相关《运动控制系统实验指导书Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。

运动控制系统实验指导书Word文件下载.docx

整个平台的实物构成如图1所示。

  图1平台的实物构成示意图

  整个平台的控制采用主从式计算机结构,总体技术方案如图2示。

  上位计算机为PC机,PC机完成控制系统任务管理,相应工作状态的实时显示、监测、控制器参数和控制程序修改等任务。

从机采用高性能16位单片机,主要承担如下工作:

电机位置信号、速度信号以及电流信号采集、处理,V/F协调控制,矢量旋转变换,速度环及位置环控制。

主从机间采用串行通讯方式交换信息。

  ISA卡可重构从机功能,科研人员基于此能直接采用高级语言编写交、直流传动系统新型控制算法。

  2

  功率主电路采用自关断器件绝缘栅极晶体管IGBT构成PWM电压型逆变器,三相不控整流器提供逆变用直流电源。

被控对象为鼠笼式异步电机与直流电机构成的机组。

  上位计算机操作及测试面板从机部分功率主电路部分电动机组

  图2总体技术方案

  “现代交、直流调速综合实验与开发平台”是整个系统的控制核心,它包含控制板、功率板、操作及测试面板等部分。

控制板80C196KC单片机为核心组成数字式交、直流传动控制系统。

功率板包含AC/DC变换电路和DC/AC或DC/DC变换电路,也就是驱动交流电机时功率板实现SPWM变频功能、控制直流电机时功率板实现PWM放大器功能。

系统控制原理被绘制在操作及测试面板上,如图3所示。

  图3操作及测试面板

  3

  图3可见,系统控制原理图已被绘制在操作及测试面板上,并设置有相应测试孔以供示波器观察之用。

图中,指示灯A、B和C代表三相交流电源是否存在;

“控制电源”开关用于管理控制板电源的有无;

故障指示包含三类,即“过流”、“短路”和“过压”。

操作按键有以下几种:

a)“主控微机”键:

该键用于选择核心控制软件是采用从机的固化程序还是用户基于上位机开发的程序。

该键有二种模式:

PC机模式和MCU模式。

在PC机模式下系统将PC机内的ISA卡切入系统,并运行用户基于上位机开发的控制程序;

在MCU模式下系统将运行从机的固化程序。

b)“给定方式”键:

在MCU模式下系统通过此开关选择给定方式,切到“数字”时系统的给定PC机通过键盘输入,切到“模拟”时操作面板上的模拟电位器给定。

c)“方向选择”键:

仅对模拟给定方式有效。

即在模拟给定方式下,系统输入的模拟量“方向选择”键选择确定其正负号,从而得到正负给定。

d)“运行模式”键:

交流电机有二种控制方式,即V/F控制方式和矢量控制方式。

在V/F控制方式下系统运行在开环状态,交流电机的V/F系统实验与开发必须将“运行模式”键置于该方式下。

在矢量控制方式下,系统运行在闭环状态,交流电机的矢量控制系统实验与开发必须将“运行模式”键置于该方式下。

e)“电机选择”键:

该平台能开展交流电机和直流电机的实验与开发工作。

该键位于DM时,直流电机被作为控制对象;

该键位于IM时,系统以三相交流异步电机作为控制对象。

f)“运行状态”键:

该按键用以控制电机是否运行。

当该键位于“停止”状态时,驱动脉冲被封锁,电机断电停止运行;

当该键位于“运行”状态时,驱动脉冲未被封锁,电机上电运行。

  平台功能

  基于该平台,能开展如下教学实验:

a)双闭环直流PWM调速系统实验b)三闭环直流PWM随动系统实验c)交流电机VVVF系统实验

  d)矢量控制交流调速系统实验e)矢量控制交流随动系统实验

  除此之外,借助于ISA卡,允许用户采用高级语言自行开发交、直流传动系统的控制算法,并基于该平台加以执行与考察。

  4

  二、上位机控制及其监控软件

  PCI数据采集卡工作原理及其算法

  DSP处理器工作原理及其算法

  5

  三、实验指导

  实验注意事项

  1.操作及测试面板上的“电机选择”、“主控微机”、“给定方式”、“运行模式”键应在控制程序运行之前设置完毕。

“方向选择”键只对面板上的模拟给定信号起作用,在系统运行过程中系统对该键的状态变化会立即作出反应。

2.送上“控制电源”、且控制程序运行之后,方能合上主电源。

否则,主电源不可能被接通。

切记压合操作及测试面板上“主电源”键时让“运行状态”键处于“停止”态。

待主电源合上之后,切换“运行状态”键处于“运行”态,电机处于带电状态,将以给定指令和方式开始运转。

  3.如果要修改控制器参数,最好通过调压器将直流母线电压调到零伏左右之后进行。

各参数取值范围如下:

  位置调节器:

前馈系数3—,初始设置值  比例系数,初始设置值0.4积分系数:

实际系统未用微分系数:

实际系统未用

  速度调节器:

比例系数,初始设置值2.8积分系数,初始设置值0.07微分系数,初始设置值

  若要恢复初始固化参数,只需重新上电复位即可。

  4.在合上“主电源”键之前,切记使调压器处于零输出。

待主电源合上之后,调节调压器让直流母线电压升高,对于交流电机一般以300--450伏为宜,最高不超过540伏;

对于直流电机以200--250伏为宜。

  5.在退出上位机监控软件、结束系统运行之前,请先将调压器调到零输出。

  双闭环直流PWM调速系统实验

  实验目的

  通过实验熟悉双极式PWM放大器的工作原理、深入了解直流PWM调速系统原理及特性、考察调节器对系统动态和静态性能的影响。

预备知识

  复习相关教材中的双极式直流PWM调速系统原理及特性、了解直流PWM调速系统调节器的工程设计方法。

  关于电流检测和速度检测霍尔电流传感器

  在高要求的电力传动系统中,对电机电流的快速准确检测是至关重要的。

本实验平台采用了零磁平衡方式的霍尔电流传感器。

该霍尔电流传感器具有测量精度高、反应速度快、可以做到无接触检测,并且输出与输入在应用频率范围内呈线性关系等优点。

本系统选用输入输出比为1000:

1的霍尔元件检测直流电机电枢电流或异步电机定子电流。

  6

  图6霍尔电流采样及电平转换处理电路

  于霍尔元件输出的是弱电流信号,因此,应将该电流信号转换成电压信号,然后经过滤波放大处理。

于霍尔电流传感器的输出为有正负方向的电流信号,若采用的A/D转换器的输入为0~+5V的电压信号,则需要有电平偏移电路。

将霍尔元件输出的小电流信号首先变换为电压信号,再经放大滤波后进人A/D通道。

在这部分电路中,稳压片给后续运放提供-5V电压基准。

并将有正负极性的电压信号变换成A/D转换器所需的单极性电压信号,为防止电压过高或者过低,设计了二极管组成的限幅电路;

于电流反馈信号具有较大的噪音纹波信号,电路中还设计了模拟滤波环节。

图6是实现这一系列目的的电路原理图。

若被检测的电流不需要转化为数字量,则图6中运算放大器U5的输出量即可用于控制或显示。

  图6中,取R1>

>

R2,另外运算放大器U5的输入电阻也很大,从而可忽略R1对霍尔元件输出电流的分流作用,则R2将霍尔元件输出的电流信号线性地转换为电压信号,经过运算放大器U1将具有正负极性的电压反馈信号转换为单极性信号送入A/D转换器。

  光电脉冲发生器

  高性能的电力传动系统一般都要求有高精度的位置或速度检测元件。

光电脉冲发生器是一种直接把角位移变量转换为数字信号的位置检测元件,它也可以用于速度信号的测量。

  光电脉冲发生器的结构原理如图7示。

它灯泡、聚光透镜、光电盘、光栏板、光敏三极管等组成。

光电盘与光栏板是用光学玻璃材料经研磨、抛光制成,玻璃表面真空镀上一层不透光的铬层,透光的条纹是用照相腐蚀而成的。

光电盘上的透光条纹分圆周等分的条纹和零脉冲条纹两行。

光栏板只腐蚀有A、B、C三条透光条纹,如图8示。

对其位置要求是,当光栏板透光条纹A与光电盘任一条纹重合时,则光栏板透光条纹B与光电盘另一透光条纹的重合性错开1/4周期。

  7

  聚光镜光栏板光敏二极管灯泡连接轴滚动轴承光电盘ACB

  光栏板A、B、C三条透光条纹后面都装有一个光敏三极管,构成一条信号输出通道。

当电动机轴带动光电盘一起转动时,光敏三极管就接受到光线亮暗变化的信号,引起光敏管所通过的电流大小的变化,从A、B两光敏管上将得到两相相位差为900的近似正弦波的电压信号,经过放大、整形输出A、B两相相位差900的矩形脉冲波。

当电动机正转时,A相超前B相900;

反转时,A相滞后B相900,据此可以鉴别电动机的转向。

  在光电盘上,对应光栏板零脉冲透光条纹圆周上,仅腐蚀一条透光条纹。

因此,光电盘转动一周,C光敏管受光一次,输出一个脉冲,这个脉冲称为零脉冲,可用来调整电气和机械的零位置。

本平台使用的光电脉冲发生器是八线增量式光电脉冲发生器,从A、B两相脉冲的脉冲个数和相位关系可以得到位置偏移量。

本系统选用的位置检测元件均为2500脉冲/转的光电脉冲发生器,为提高位置检测的分辨率和速度测量的精度,通常会采用四倍频技术,这就意味着电机转动1转产生的脉冲个数将为10000个。

  图7光电脉冲发生器的结构示意图图8光栏板透光条纹

  图9光电脉冲发生器信号处理电路

  实际应用时,于光电脉冲发生器通常安装在电机转子轴上,必然受到较强的电磁干扰,为提高系统的抗干扰性能,它发出的脉冲信号需要先经过差动输入和光电隔离元件隔离之后,才能进行处理。

本系统采用MC3486差动接收器实现线路阻抗的匹配,光电隔离器6N137使控制电路和光电脉冲发生器电路不发生电的联系,避免了反馈信号对高速CPU的电磁干扰。

图9为其处理电路。

  采用光电脉冲发生器进行数字式速度测量用的较多的方法有:

M法、T法、M/T法三种方式。

本平台采用了M法测速方式。

所谓M法测速就是在相等的时间间隔内用读取码盘脉冲的个数来计

  8

  算转速。

设在时间T内读到脉冲数为m1,码盘每转产生m2个脉冲,则转速为:

  n(60m1)/(m2T)

  回答下列问题:

  [1]调节直流电机的速度主要有哪几种方法?

调速系统的性能指标主要有哪些?

[2]如何检测电机的旋转速度和电流?

实验设备

  三相调压器一台

  交流电机+直流电机机组一套实验与开发平台一套PC机一台

  双线示波器一台转速表一只

  实验步骤与内容第一步:

计算机仿真实验

  某双极式PWM放大器供电的双闭环直流调速系统,系统动态结构框图如图10示。

系统被控他励直流电机的固有参数为:

Un=180V,ne=1000r/min,Ie=,Ce=﹒min/rev,Tl=,Tm=,R=欧。

  系统中PWM放大器的功率器件采用IGBT,三角载波频率为4KHz。

系统的速度环和电流环均采用微处理器软件方式实现,速度环采样周期为1毫秒,电流环采样周期为250微秒。

速度给定的最大数字量为2048,速度调节器输出限幅值为2048,电流调节器输出限幅值为2048。

请回答下列问题:

  确定系统中的PWM放大器的放大系数Ks及延迟时间Ts、速度反馈系数α、电流反馈系数β、电流和速度滤波时间常数Toi和Ton。

  用工程设计方法设计ASR、ACR调节器参数,并采用MATLAB加以仿真验证。

具体设计要求为稳态指标:

无静差;

动态指标:

电流超调量≤5%;

空载起动到额定转速时的转速超调量≤10%。

  图10  

  三角波双闭环直

  **UctUiLUnIdI-流调速系-Ks1/R11ASRACRT++1Toi+1Ton+1s1+-TlS-统-EUiUn

  第二步:

物Toi+1理实验1.断开总ER1/CTsTon+1电源开关。

  n检查实验设备的连

  接线。

  em9

  2.合上总电源开关,压合“控制电源”键,控制电源指示灯亮。

  3.选择操作及测试面板上相关按键的状态:

设置“主控微机”键为“MCU”状态、设置“给定方式”键为“数字”状态或“模拟”状态、“运行模式”键此时不起作用、设置“电机选择”键为“DM”状态、设置“运行状态”键为“停止”状态。

  4.接通计算机电源,运行监控软件并进入其主菜单。

运行控制程序,逆时针旋转三相调压器手柄以保证调压器输出为零,继而合上“主电源”按键,然后将“运行状态”键设置为“运行”状态。

注意:

任何时候在压合“主电源”键之前请务必先将三相调压器输出电压调至0伏,否则有可能烧坏功率管。

  5.用示波器观察三角波信号、以及双极式PWM放大器中同一桥臂的上下功率管栅极驱动信号P1和P4、

  P3和P6之间的关系,并读出它们之间的死区时间。

  6.用手转动电机轴,观察并记录光电编码盘输出A、B信号对GND的波形。

对比电机在正反转两种情况下信号A、B之间的相位关系。

  7.顺时针旋转三相调压器手柄使直流母线电压达到期望值。

监控软件进入主菜单“速度”下的“给定”项,输入一速度给定值,电机开始转动。

退出“给定”选项,选择“速度”菜单下的“显示”项,稍等片刻,计算机屏幕显示如图11的窗口。

图中左边图形框用来显示转速过渡过程曲线,右边文字框用来输入图形坐标参数。

电流标定指图形中能显示的电流最大值,速度标定指图形中能显示的速度最大值;

逐项输入相应参数,图形框将显示电动机启动时的过渡过程曲线。

请记录这些响应曲线,并根据所显示的曲线估算速度超调量、上升时间和稳态误差为5%时的过渡过程时间。

在电机运行于某一稳定转速情况下,输入速度给定值为“0”,电机将停止转动,在速度“显示”菜单下可观察到系统的制动过程,请记录制动时间及制动波形。

8.稳态电流和转速观察:

让电机在不同转速给定下运行,通过示波器观察电机实际电枢电流波形

  idf;

采用转速表测量电机的实际转速,并与给定转速比较。

  9.调节器参数实验:

逆时针旋转三相调压器手柄以使调压器输出为零后,在上位机监控软件的“参数”菜单栏中,改变速度调节器的比例系数或积分系数。

待参数修改完毕,再顺时针旋转三相调压器手柄使直流母线电压达到期望值,重复上面步骤7的实验,对比分析速度调节器参数对系统性能的影响。

  10

  图11速度响应的显示窗口实验报告要求

  1.参考操作及测试面板上绘制的系统控制原理图,详细画出这种双极式直流PWM调速系统的工作原理框图,深入分析其工作原理。

  2.整理光电编码盘输出A、B信号的波形,分析其检测速度的原理。

  3.结合步骤7和步骤9的实验结果,分析速度调节器参数对系统性能的影响。

  4.步骤8的实验可知该系统为无静差系统,若速度调节器仅为比例调节,系统是否可获得无速度静差?

请加以分析。

  三闭环直流PWM随动系统实验

  通过实验,掌握三闭环直流PWM随动系统组成及其控制原理,考察这类系统的动静态性能。

预习要求复习教材中相关内容回答下问题

  [1]随动系统与调速系统有何区别?

  [2]随动系统有哪些性能指标?

  [3]复合控制有什么作用?

实验设备同的实验设备。

实验步骤与内容

  1.断开电源总开关,检查实验设备的连接线。

  2.合上电源总开关,压合“控制电源”键,控制电源指示灯亮。

  3.选择操作及测试面板上相关按键的状态。

  4.接通计算机电源,运行监控软件并进入主菜单。

  5.顺时针旋转三相调压器手柄使直流母线电压达到期望值。

选择监控软件“位置”菜单下的“定位”选项后,屏幕弹出如图12所示窗口,根据提示输入给定位置量,逐项输入相应参数,然后让电机运行,图形显示框内将显示系统的位置响应曲线。

图中:

“位置标定”表示图形显示栏内显示位置曲线时,纵轴每格所表示的脉冲个数,一般按位置给定值除以5—6所得数值为宜;

“误差标定”表示图形显示栏内显示误差曲线时,纵坐标每格所表示的脉冲数;

按动F1--F10键,选择时间轴每格所表示的时间。

  图12定位窗口1

  7.退出定位选项,选择“位置”项的显示功能,屏幕弹出如图13所示窗口,标定图形显示参数。

图中将显示定位过程中的系统位置θ=f和速度n=f变化曲线。

  12

  图13定位窗口2

  系统随动实验:

选择监控软件“位置”选项下的随动功能,显示屏弹出如图14所示窗口,根据提示输入相关参数,电机运行,图形显示框内显示系统响应曲线。

“跟踪速度”代表给定的跟踪位置量的变化速度;

“积分时间”为电机达到跟踪速度时的积分时间常数;

“位置标定”和“误差标定”如前所述,在选择时间轴时间后,电机开始转动。

开始时刻电机位于一随机位置,被跟踪位置处于坐标圆点;

系统启动后,被跟踪位置量按一定斜率在坐标图上向上移动,电机按指定的跟踪速度运行,按动“ESC”键系统将停止随动过程。

  图14随动实验窗口

  9.分别改变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考试认证 > 公务员考试

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1