5000道电工进网作业许可考试高压理论部分判断题docxWord文档下载推荐.docx
《5000道电工进网作业许可考试高压理论部分判断题docxWord文档下载推荐.docx》由会员分享,可在线阅读,更多相关《5000道电工进网作业许可考试高压理论部分判断题docxWord文档下载推荐.docx(62页珍藏版)》请在冰豆网上搜索。
19.在测量直流电流时要注意,应使电流从电流表的正端流入,负端流出。
20.电路中电流大小可以用电流表进行测量,测量时是将电流表并联在电路中。
21.电流表的量程应等于被测电路中实际电流的数值。
22.在电路中,给电路提供能源的装置称为电源。
23.电源高电位一端称为正极,低电位一端称为负极。
24.电动势表征电源中外力将非电形式的能量转变为电能时做功的能力。
25.导体电阻的大小与导体的长度、横截面积和材料的性质有关。
26.电阻的单位是欧姆,符号表示为Ω。
27.电动势的大小等于外力克服电场力把单位正电荷在电源内部从正极移到负极所做的功。
28.电源端电压表示电场力在外电路将单位负电荷由高电位移向低电位时所做的功。
29.在电源内部,电动势和电流的方向相反。
30.在电路中,负载可以将其他形式的能量转换为电能。
31.电源高电位一端称为正极,低电位一端称为负极。
32.电源的电动势是一个定值,与外电路的负载大小无关。
33.导体电阻的大小与导体的长度成正比,与横截面积成反比,并与材料的性质有关。
34.电源是将其他能量转换为电能的装置。
35.导体的电阻随温度变化而变化。
36.导体的电阻大小与温度变化无关,在不同温度时,同一导体的电阻相同。
37.导体电阻的大小与导体的长度成反比,与横截面积成反比,并与材料的性质相关。
38.ρ称为电阻率,单位是欧姆·
米(Ω·
m)。
39.从电阻消耗能量的角度来看,不管电流怎样流,电阻都是消耗能量的。
40.当导体的长度相同时,同种材料导体的横截面积越大,导体的电阻越大。
41.当导体的长度相同时,同种材料导体的横截面积越大,导体的电阻越小。
42.电阻的倒数称为电导,电阻越大,电导越小。
43.部分电路欧姆定律表明,当电阻一定时,通过电阻的电流与电阻两端的电压成反比。
44.部分电路欧姆定律表明,当电压一定时,通过电阻的电流与电阻大小成正比。
45.全电路欧姆定律表明,在闭合回路中,电流的大小与电源电动势成正比,与整个电路的电阻成正比。
46.全电路欧姆定律用于分析回路电流与电源电动势的关系。
47.全电路欧姆定律用于分析支路电流与电源电动势的关系。
48.全电路欧姆定律用于分析回路电流与电源电压的关系。
49.在电源内部,电动势和电流的方向相同。
50.电源电动势的电功率表示电源电压U与通过电源电流I的乘积,即P=UI。
51.电源电动势的电功率表示电源电动势E与通过电源电流I的乘积,即P=EI。
52.在电阻串联的电路中,流过各串联电阻上的电流相等。
53.几个等值的电阻串联,每个电阻中通过的电流不相等。
54.在电路中,将两个及以上的电阻的一端全部连接在一点上,而另一端全部连接在另一点上,这样的连接称为电阻的并联。
55.在电阻并联的电路中,电路的电流等于各分支电流之和。
56.在并联电路中,各支路的电流一定相等。
57.在电阻并联的电路中,电路总电阻的倒数等于各并联电阻的倒数之和。
58.两个电阻并联,其等效电阻比其中任何一个电阻都大。
59.并联电路的各支路对总电流有分流作用。
60.在电路中,既有电阻的并联,又有电阻的串联,这样的电路称为混联电路。
61.在电路中,连接电源和负载的部分称为中间环节。
62.电路是由电气设备和电器元件按一定方式组成的,是电流的流通路径。
63.不能构成电流通路的电路处于短路状态。
64.在电路中,电能的常用单位是kWh,1kWh的电能俗称为1度电。
65.在一个电路中,电源产生的功率和负载消耗功率以及内阻损耗的功率是平衡的。
(√)66.1焦耳表示1安培电流通过1欧姆电阻在1秒之内产生全部热量时所消耗的电能。
67.在电路中,负载消耗的电能W为负载功率P与其通电时间t的乘积,即W=Pt。
68.当通过电阻R的电流一定时,电阻R消耗的电功率P与电阻R的大小成反比。
69.负载的电功率表示负载在单位时间消耗的电能。
70.电阻元件消耗(或吸收)的电能W=I2Rt或W=UIt。
71.磁铁具有一个重要性质,就是异性磁极互相吸引。
72.人们把具有吸引铜、镍、钴等物质的性质称为磁性,具有磁性的物体叫磁体。
73.磁铁两端磁性最强的区域称为磁极。
74.磁力线在某区域的密度与该区域的磁场强弱成反比。
75.磁力线是描述磁场结构的一组曲线,磁力线的疏密程度,反映磁场中各点磁场的强弱。
76.右手螺旋定则可以用已知电流方向来判断其所产生的磁场方向,也可以用已知磁场的方向来判断产生磁场的电流方向。
77.磁力线上某点的法线方向就是该点磁场的方向。
78.在磁体外部,磁力线的方向是由N极到达S极。
79.在磁体外部,磁力线的方向是由S极到达N极。
80.在磁体内部,磁力线的方向是由S极到达N极。
81.磁力线是闭合曲线。
82.直载流导线周围的磁力线是环绕导线的同心圆状,离导线越近,磁力线分布越疏,离导线越远,磁力线分布越疏。
83.直线载流导线周围的磁力线是环绕导线的同心圆形状,离导线越近,磁力线分布越疏,离导线越远,磁力线分布越密。
84.长直载流导线周围的磁力线是环绕导线的同心圆形状,离导线越近,磁力线分布越密,离导线越远,磁力线分布越疏。
85.磁场的方向与产生磁场的电流的方向由左手螺旋定则决定。
86.磁力线在某区域的密度与该区域的磁场强弱成正比。
87.用右手螺旋定则判定长直载流导线的磁场时,右手握住导线,伸直拇指,大拇指指向电流的方向,则四指环绕的方向为磁场的方向。
88.通过与磁场方向平行的某一面积上的磁力线总线,称为通过该面积的磁通。
89.磁感应强度B是用来描述磁场的强弱和方向的物理量。
90.磁感应强度B与垂直于磁场方向的面积S的乘积,称为通过该面积的磁通量Φ,简称磁通,即Φ=BS。
91.线圈中通过的电流越小,在其周围产生磁场就越强。
92.通电线圈的圈数越多,在其周围产生磁场就越强。
93.磁通越大,则表示磁场越强。
94.在工程上,常用较小的磁感应强度单位“高斯(GS)”,1T=104GS。
95.磁感应强度的单位是“特斯拉”,用字母“T”表示。
96.空气的磁导率为4π×
10-7H/m。
97.其他材料的导磁率和空气相比较,其比值称为相对导磁率。
98.反磁性物质的相对导磁率小于1。
99.顺磁性物质的相对导磁率略大于1。
100.铁磁性物质的相对导磁率略大于1。
101.磁场中某点的磁感应强度B与磁导率μ的比值,称为该点的磁场强度H。
102.通过同样大小电流的载流导线,在同一相对位置的某一点,不管磁介质是否相同,都具有相同的磁场强度。
103.通过电磁感应现象可以知道,导体在磁场中切割磁力线的运动速度越快,导体的感应电动势越小。
104.线圈匝数越多,线圈电感越大。
105.感应电动势的方向与磁力线方向、导体运动方向相关。
106.导体切割磁力线一定会产生感应电流。
107.使用右手定则来判断导体上感应电动势的方向时,掌心应迎着磁力线,大拇指指向导体的运动方向,四指的方向即是感应电动势的方向。
108.使用右手定则来判断导体上感应电动势的方向时,掌心应迎着磁力线,四指指向导体的运动方向,大拇指的方向即是感应电动势的方向。
109.导体处于变化的磁场中时,导体内会产生感应电动势。
110.线圈中因磁通变化而产生的感应电动势(电流)的大小和方向,可以用楞次定律来确定。
111.电磁力的大小与导体所处的磁感应强度、导体在磁场中的长度和通过导体中的电流的乘积成反比。
112.当通电导体与磁力线垂直时,导体受到的磁力为零。
113.判断载流导体在磁场中运动方向时,应使用右手定则。
114.在交流电路中,电压、电流、电动势都是不交变的。
115.将10A的直流电流和最大值为10A的交流电流分别通过阻值相同的电阻,则在同一时间内通过交流电流的电阻发热大。
116.交流电流的有效值和最大值之间的关系为I=Im/。
117.频率为50Hz的交流电,其周期是0.02s。
118.频率为50Hz的交流电,其角频率为157rad/s。
119.角频率的单位是rad(弧度)。
120.在交流电路中当频率高到一定时,电流就明显地集中到导线表面附近流动,这种现象称为趋肤效应。
121.无功功率中的“无功”的含义是“交换”。
122.无功功率中的“无功”的含义是“无用”。
123.在纯电容电路中,容抗XC与线圈的电容C和交流电频率f成正比。
124.交流电流的频率越高,则电感元件的感抗值越小,而电容元件的容抗值越大。
)125.在纯电阻电路中,只有有功功率,没有无功功率。
126.交流电路中,电阻元件通过的电流与其两端电压是同相位的。
127.在纯电阻电路中,在相同时间内,相同电压条件下,通过的电流越大,电路消耗的电能就越少。
128.在电感电路中,感抗与频率成反比,频率越高,感抗越小。
129.实验证明,在纯电容电路中,交流电的频率越高,容抗就越大。
130.视在功率S常用来表征设备的最大容量,并标在铭牌上。
131.交流电路中的阻抗包括电阻和电抗,而电抗又分为感抗和容抗。
132.在交流电路中,电阻、纯电感和纯电容都是耗能元件。
133.三相交流电路有三个交变电动势,它们频率相同、相位相同。
134.提高功率因数会使线路上的电能损耗增大。
135.对于感性负载电路,可以通过无功补偿将电路的功率因数cosΦ提高到等于1,电路仍能够正常运行。
136.三相交流电路的功率和单相交流电路的功率一样,都有有功功率、无功功率和视在功率之分。
137.三相交流电的相序是U-V-W-U,称为正序。
138.三相交流电的相序是U-W-V-U,称为正序。
139.有中性线或零线的三相制系统称为三相三线制系统。
140.三相交流对称电路中,如采用三角形接线时,线电流等于相电流的倍。
(√)141.两根相线之间的电压称为线电压。
142.两根相线之间的电压称为相电压。
143.相线与中性线(或零线)间的电压称为线电压。
144.在三相对称电路中,总的有功功率等于线电压、线电流和功率因数三者乘积的倍。
第二章电力系统基本知识
1.由各级电压的电力线路,将各种发电厂、变电所和电力用户联系起来的一个发电、输电、配电和用电的整体,叫做电力系统。
2.以煤、石油、天然气等作为燃料,燃料燃烧时的化学能转换为热能,然后借助汽轮机等热力机械将热能变为机械能,并由汽轮机带动发电机将机械能变为电能,这种发电厂称火力发电厂。
3.火力发电厂假如既发电又供热则称热电厂。
4.利用江河所蕴藏的水力资源来发电,这种电厂称水力发电厂。
5.除火电厂、水电厂、核电厂外还有地热电站、风力电站、潮汐电站等等。
6.从发电厂发电机开始一直到变电设备为止,这一整体称为电力系统。
7.大型电力系统构成了环网、双环网,对重要用户的供电有保证,当系统中某局部设备故障或某部分线路需要检修时,可以通过变更电力网的运行方式,对用户连续供电,减少由于停电造成的损失。
8.电力系统的运行具有灵活性,各地区可以通过电力网互相支持,为保证电力系统安全运行所必需的备用机组必须大大地增加。
9.输电网中又分为交流高压输电网(一般指110、220kV电网)、交流超高压输电网(一般指330、500、750kV电网)、交流特高压输电网(一般指1000kV及以上电压电网)。
10.电网按其在电力系统中的作用不同,分为输电网和配电网,配电网是以高压甚至超高电压将发电厂、变电所或变电所之间连接起来的送电网络,所以又称为电力网中的主网架。
11.配电网的电压根据用户负荷情况和供电要求而定,配电网中又分为高压配电网(一般指35kV、110kV及以上电压)、中压配电网(一般指20kV、10kV、6kV、3kV电压)及低压配电网(220V、400V)。
12.直接将电能送到用户的网络称为输电网。
13.一般电压等级为35kV或110kV的线路称为高压配电线路。
14.电能的生产、输送、分配以及转换为其他形态能量的过程,是分时进行的。
15.电力系统的发电、供电、用电无须保持平衡。
16.装设双台变压器的用电、用电在同一时间内完成的特点,决定了发电、供电、用电必须时刻保持平衡,发供电随用电的瞬时增减而增减。
17.电力生产具有发电、供电、用电在同一时间内完成的特点,决定了发电、供电、用电必须时刻保持平衡,发供电随用电的瞬时增减而增减。
18.在一个电网里不论有多少个发电厂、供电公司,都必须接受电网的统一调度,并依据统一质量标准、统一管理办法,在电力技术业务上受电网的统一指挥和领导,电能由电网统一分配和销售,电网设备的启动、检修、停运、发电量和电力的增减,都由电网来决定。
19.发电厂、电网经一次投资建成之后,它就随时可以运行,电能不受或很少受时间、地点、空间气温、风雨、场地的限制,与其他能源相比是最清洁、无污染、对人类环境无害的能源。
20.用电负荷是用户在某一时刻对电力系统所需求的电流。
21.若中断供电时可能造成人身伤亡情况,则称为二类负荷。
22.若中断供电时将在经济上造成较大损失,则称为一类负荷。
23.若中断供电将影响重要用电单位的正常工作,则称为二类负荷。
24.凡不属于一类和二类负荷的用电负荷称为三类负荷。
25.对一类负荷的供电要求,应由两个独立电源供电,当一个电源发生故障时,另一个电源不应同时受到损坏。
26.在供电要求中,对一类负荷中的特别重要负荷,除由两个独立电源供电外,还应增设应急电源,并可以将其他负荷接入应急供电系统。
27.对于三类负荷,应采取最少不少于两个独立电源供电。
28.配备应急电源时,自动投入装置的动作时间能满足允许中断供电时间的系统可选用带自动投入装置的独立于正常电源的专用馈电线路。
29.配备应急电源时,对于允许中断供电时间在5小时以上的供电系统,可选用快速自启动的发电机组。
30.配备应急电源时,允许中断供电时间为秒级的系统可选用蓄电池不间断供电装置等。
31.二类负荷的供电系统宜采用双回路线供电,两回路线应尽量引自不同变压器或两段母线。
32.对三类负荷供电要求,一般不考虑特殊要求。
33.变、配电所是电力网中的线路连接点,是用以变换电压、交换功率和汇集、分配电能的设施。
34.按变电所在电力系统中的位置、作用及其特点划分,变电所的主要类型有枢纽变电所、区域变电所、地区变电所、配电变电所、用户变电所、地下变电所和无人值班变电所等。
35.电气主接线中所用的电气设备,称为二次设备。
36.变、配电所中用来承担输送和分配电能任务的电路,称为一次电路或电气主接线。
37.单母线分段接线在母线故障或检修时,配电所将全所停电。
38.单母线接线,在一段母线故障或检修时,另一段母线仍旧能继续运行。
39.在降压变电所内,变压器是将高电压改变为低电压的电气设备。
40.高压为线路一变压器组接线,低压为单母线接线,只要线路或变压器及变压器低压侧任何一元件发生故障或检修,整个变电所都将停电,母线故障或检修,整个变电所也要停电。
41.对于没有总降压变电所和高压配电所的用电区变电所或小型用户降压变电所,在变压器高压侧必须配置足够的高压开关设备以便对变压器控制和保护。
42.装设双台变压器的用电区变电所或小型用户变电所,一般负荷较重要或者负荷变化较大,需经常带负荷投切,所以变压器高低压侧开关都采用断路器(低压侧装设低压断路器,即自动空气开关)。
43.系统最高工作电压对电气设备和电力系统安全运行危害极大。
44.就照明负荷来说,当电压降低时,白炽灯的发光效率和光通量都急剧上升。
45.当电压比额定值高10%时,白炽灯的寿命将下降20%。
46.电视、广播、传真、雷达等电子设备对电压质量的要求不高,电压过高或过低都不会使特性严重改变而影响正常运行。
47.在某一个时段内,电压急剧变化而偏离最大值的现象,称为电压波动。
48.电压变化的速率大于2%的,即为电压急剧变化。
49.低压照明用户供电电压允许偏差为额定电压的+10%~-10%。
50.10kV及以下三相供电的,电压允许偏差为额定电压的±
10%。
51.35kV及以上电压供电的,电压正、负偏差绝对值之和不超过额定电压5%。
52.一般地,电力系统的运行电压在正常情况下不允许超过额定电压。
53.一般地,电力系统的运行电压在正常情况下不允许超过最高工作电压。
54.电动机的起动、电焊机的工作,特别是大型电弧炉和大型轧钢机等冲击性负荷的工作,均会引起电网电压的波动,电压波动可影响电动机的正常起动,甚至使电动机无法起动。
55.非周期性电压急剧波动引起灯光闪烁,光通量急剧波动,而造成人眼视觉不舒适的现象,称为闪变。
56.对调压要求高的情况,可选用有载调压变压器,使变压器的电压分接头在带负荷情况下实时调整,以保证电压稳定。
57.供配电系统中的电压损耗在输送功率确定后,其数值与各元件的阻抗成正比,所以增大供配电系统的变压级数和减少供配电线路的导线截面,是减小电压损耗的有效方法,线路中各元件电压损耗减少,就可提高末端用电设备的供电电压。
58.三相负荷假如不平衡,会使有的相负荷过大,有的相负荷过小,负荷过小的相,电压损耗大大增加,这样使末端用电设备端电压太低,影响用电安全。
59.对于电力系统中过多的无功功率传送引起的电压损耗增加和电压下降,应采用无功补偿设备(例如:
投入并联电容器或增加并联电容器数量)解决。
60.电力系统无功补偿一般采用耦合电容器。
61.为了保证电压质量合乎标准,往往需要装设必要的有功补偿装置和采取一定的调压措施。
62.若系统中过多的有功功率传送,则可能引起系统中电压损耗增加,电压下降。
63.在供电系统设计时要正确选择设备,防止出现“大马拉小车”等不合理现象,即提高自然功率因数。
64.由两台变压器并联运行的工厂,当负荷小时可改为一台变压器运行。
65.运行中可在工厂变配电所的母线上或用电设备附近装设并联电容器,用其来补偿电感性负载过大的感性电流,减小无功损耗,提高功率因数,提高末端用电电压。
66.系统功率因数太低,会使系统无功损耗增大,同时使线路中各元件的电压损耗也增加,导致末端用电设备端电压太低,影响安全可靠用电。
67.在电力系统中,若供电距离太长,线路导线截面太小,变压级数太多,则可能造成电压损耗增大,引起电压下降。
68.在电力系统中,对于供电距离太长、线路导线截面太小、变压级数太多等引起的电压下降,可采用调整变压器分接头、降低线路阻抗等方法解决。
69.电网中发电机发出的正弦交流电压每分钟交变的次数,称为频率,或叫供电频率。
70.频率是电能质量的重要指标之一,我国电力采用交流60Hz频率,俗称“工频”。
71.频率自动调节装置可以提高电力系统的供电可靠性。
72.对电动机而言,频率降低将使电动机的转速上升,增加功率消耗,特别是某些对转速要求较严格的工业部门(如纺织、造纸等),频率的偏差将大大影响产品质量,甚至产生废品。
73.对电动机而言,频率增高将使其转速降低,导致电动机功率的降低,将影响所带动转动机械的出力,并影响电动机的寿命。
74.在电力系统正常状态下,电网装机容量在3000MW及以上,供电频率允许偏差为±
0.3Hz。
75.在电力系统正常状态下,电网装机容量在3000MW及以下,供电频率允许偏差为±
1.0Hz。
76.在电力系统非正常状态下,供电频率允许偏差可超过±
2.0Hz。
77.日常用的交流电是正弦交流电,正弦交流电的波形要求是严格的正弦波(包括电压和电流)。
78.谐波电流通过交流电动机,不仅会使电动机的铁芯损耗明显增加,绝缘介质老化加速,缩短使用寿命,而且还会使电动机转子发生振动现象,严重影响机械加工的产品质量。
79.当电源波形不是严格正弦波时,它就有很多的高次谐波成分,谐波对电气设备的危害很大,可使变压器的铁芯损耗明显增加,从而使变压器出现过热,不仅增加能耗,而且使其绝缘介质老化加速,缩短使用寿命。
80.谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过电流发热导致绝缘击穿甚至造成烧毁。
81.谐波电流可使电力系统发生电流谐振,从而在线路上引起过电流,有可能击穿线路的绝缘。
82.电网谐波的产生,主要在于电力系统中存在各种线性元件。
83.产生谐波的元件很多,最为严重的是大型的晶闸管变流设备和大型电弧炉,它们产生的谐波电流最为突出,是造成电网谐波的主要因素。
84.电力系统正常运行时,各相之间是导通的。
85.电力系统中相与相之间或相与地之间(对中性点直接接地系统而言)通过金属导体、电弧或其他较小阻抗连接而形成的正常状态称为短路。
86.电力系统在运行中,相与相之间或相与地(或中性线)之间发生短路时流过的电流,其值可远远大于额定电流,并取决于短路点距电源的电气距离。
87.在发电机出口端发生短路时,流过发电机的短路电流最大瞬时值可达额定电流的10~15倍