初一数学下学期知识点归纳及复习卷文档格式.docx
《初一数学下学期知识点归纳及复习卷文档格式.docx》由会员分享,可在线阅读,更多相关《初一数学下学期知识点归纳及复习卷文档格式.docx(19页珍藏版)》请在冰豆网上搜索。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:
两直线平行,同位角相等。
两直线平行,内错角相等。
性质3:
两直线平行,同旁内角互补。
平行线的判定:
判定1:
同位角相等,两直线平行。
判定2:
内错角相等,两直线平行。
判定3:
同旁内角相等,两直线平行。
四、经典例题
例1如图,直线AB,CD,EF相交于点O,∠AOE=54°
,∠EOD=90°
,求∠EOB,∠COB的度数。
例2如图AD平分∠CAE,∠B=350,∠DAE=600,那么∠ACB等于多少?
例3三角形的一个外角等于与它相邻的内角的4倍,等于与它不
相邻的一个内角的2倍,则这个三角形各角的度数为()。
A.450、450、900B.300、600、900
C.250、250、1300D.360、720、720
例4已知如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数。
例5如图,AB∥CD,EF分别与AB、CD交于G、H,MN⊥AB于G,∠CHG=1240,则∠EGM等于多少度?
第六章平面直角坐标系
有序数对
平面直角坐标系
平面直角坐标系
用坐标表示地理位置
坐标方法的简单应用
用坐标表示平移
有序数对:
有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)
平面直角坐标系:
在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
横轴、纵轴、原点:
水平的数轴称为x轴或横轴;
竖直的数轴称为y轴或纵轴;
两坐标轴的交点为平面直角坐标系的原点。
坐标:
对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:
两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
三、经典例题
例1一个机器人从O点出发,向正东方向走3米到达A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点,如果A1求坐标为(3,0),求点A5的坐标。
例2如图是在方格纸上画出的小旗图案,若用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()
A、(0,3)B、(2,3)C、(3,2)D、(3,0)
例3如图2,根据坐标平面内点的位置,写出以下各点的坐标:
A(),B(),C()。
例4如图,面积为12cm2的△ABC向x轴正方向平移至△DEF的位置,相应的坐标如图所示(a,b为常数),
(1)、求点D、E的坐标
(2)、求四边形ACED的面积。
例5过两点A(3,4),B(-2,4)作直线AB,则直线AB()
A、经过原点B、平行于y轴
C、平行于x轴D、以上说法都不对
第七章三角形
边
与三角形有关的线段高
中线
角平分线
三角形的内角和多边形的内角和
三角形的外角和多边形的外角和
三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三边关系:
三角形任意两边的和大于第三边,任意两边的差小于第三边。
高:
从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
中线:
在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
角平分线:
三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
多边形:
在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的内角:
多边形相邻两边组成的角叫做它的内角。
多边形的外角:
多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
正多边形:
在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
平面镶嵌:
用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
三、公式与性质
三角形的内角和:
三角形的内角和为180°
三角形外角的性质:
三角形的一个外角等于和它不相邻的两个内角的和。
三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:
n边形的内角和等于(n-2)·
180°
多边形的外角和:
多边形的内角和为360°
。
多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有
条对角线。
例1如图,已知△ABC中,AQ=PQ、PR=PS、PR⊥AB于R,PS⊥AC于S,有以下三个结论:
①AS=AR;
②QP∥AR;
③△BRP≌△CSP,其中(
).
(A)全部正确
(B)仅①正确
(C)仅①、②正确
(D)仅①、③正确
例2如图,结合图形作出了如下判断或推理:
①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;
②如图乙,如果AB∥CD,那么∠B=∠D;
③如图丙,如果∠ACD=∠CAB,那么AD∥BC;
④如图丁,如果∠1=∠2,∠D=120°
,那么∠BCD=60°
.其中正确的个数是(
)个.
(A)1
(B)2
(C)3
(D)4
例3在如图所示的方格纸中,画出,△DEF和△DEG(F、G不能重合),使得△ABC≌△DEF≌DEG.你能说明它们为什么全等吗?
例4测量小玻璃管口径的量具CDE上,CD=l0mm,DE=80mm.如果小管口径AB正对着量具上的50mm刻度,那么小管口径AB的长是多少?
例5在直角坐标系中,已知A(-4,0)、B(1,0)、C(0,-2)三点.请按以下要求设计两种方案:
作一条与
轴不重合,与△ABC的两边相交的直线,使截得的三角形与△ABC相似,并且面积是△AOC面积的
.分别在下面的两个坐标中系画出设计图形,并写出截得的三角形三个顶点的坐标。
第八章二元一次方程组
设未知数,列方程
解代入法
方加减法
程(消元)
组
检验
二元一次方程:
含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
二元一次方程组:
把两个二元一次方程合在一起,就组成了一个二元一次方程组。
二元一次方程的解:
一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二元一次方程组的解:
一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。
消元:
将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
代入消元:
将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
加减消元法:
当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
例1用加减消元法解方程组,由①×
2—②得。
例2如果
是同类项,则
、
的值是(
)
A、
=-3,
=2
B、
=2,
=-3
C、
=-2,
=3
D、
=3,
=-2
例3计算:
例4王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元。
其中种茄子每亩用了1700元,获纯利2400元;
种西红柿每亩用了1800元,获纯利2600元。
问王大伯一共获纯利多少元?
例5已知关于x、y的二元一次方程组的解满足二元一次方程,求
的值。
第九章不等式与不等式组
设未知数,列不等式(组)
解
不
等
式
不等式:
一般地,用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。
不等式的解:
使不等式成立的未知数的值,叫做不等式的解。
不等式的解集:
一个含有未知数的不等式的所有解,组成这个不等式的解集。
一元一次不等式:
不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
一元一次不等式组:
一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
一元一次不等式组的解集:
一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
不等式的性质:
不等式的基本性质1:
不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的基本性质2:
不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变
例1当x时,代数代2-3x的值是正数。
例2一元一次不等式组的解集是(
)
A.-2<x<3
B.-3<x<2
C.x<-3
D.x<2
例3已知方程组的解为负数,求k的取值范围。
例4某种植物适宜生长在温度为18℃~20℃的山区,已知山区海拔每升高100米,气温下降0。
5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?
(假设山脚海拔为0米)
例5某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:
A类年票每张120元,持票者进入园林时,无需再用门票;
B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;
C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。
第十章数据的收集、整理与描述
制表绘图
全面调查:
考察全体对象的调查方式叫做全面调查。
抽样调查:
调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
总体:
要考察的全体对象称为总体。
个体:
组成总体的每一个考察对象称为个体。
样本:
被抽取的所有个体组成一个样本。
样本容量:
样本中个体的数目称为样本容量。
频数:
一般地,我们称落在不同小组中的数据个数为该组的频数。
频率:
频数与数据总数的比为频率。
组数和组距:
在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
例1某班有50人,其中三好学生10人,优秀学生干部5人,在扇形统计图上表示三好学生和优秀学生干部人数的圆心角分别是(
A.720,360
B.1000,500
C.1200,600
D.800,400
例2某音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用(
A.扇形统计图
B.折线统计图
C.条形统计图
D.以上都可以
例3在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5-99.5)出现的频率为15%,则这一次抽样调查的容量是________.
⑵第三小组(69.5~79.5)的频数是_______,频率是________.
例4如图,是一位护士统计一位病人的体温变化图:
根据统计图回答下列问题:
⑴病人的最高体温是达多少?
⑵什么时间体温升得最快?
例5在一次抽样调查中收集了一些数据,对数据进行分组,绘制了下面的频数分布表:
⑴已知最后一组(89.5~99.5)出现的频率为15%,则这一次抽样调查的容量是________.
人教版七年级下期期末数学测试题
一、选择题:
(本大题共10个小题,每小题3分,共30分)
1.若m>-1,则下列各式中错误的是()
A.6m>-6B.-5m<-5C.m+1>0D.1-m<2
2.下列各式中,正确的是()
A.
=±
4B.±
=4C.
=-3D.
=-4
3.已知a>b>0,那么下列不等式组中无解的是()
A.
B.
C.
D.
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()
(A)先右转50°
,后右转40°
(B)先右转50°
,后左转40°
(C)先右转50°
,后左转130°
(D)先右转50°
,后左转50°
5.解为
的方程组是()
A.
B.
C.
D.
6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()
A.1000B.1100C.1150D.1200
(1)
(2)(3)
7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()
A.4B.3C.2D.1
8.在各个内角都相等的多边形中,一个外角等于一个内角的
,则这个多边形的边数是()
A.5B.6C.7D.8
9.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20cm2,则四边形A1DCC1的面积为()
A.10cm2B.12cm2C.15cm2D.17cm2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A.(5,4)B.(4,5)C.(3,4)D.(4,3)
二、填空题:
本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.
11.49的平方根是________,算术平方根是______,-8的立方根是_____.
12.不等式5x-9≤3(x+1)的解集是________.
13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.
14.如图3所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:
____________.
15.从A沿北偏东60°
的方向行驶到B,再从B沿南偏西20°
的方向行驶到C,则∠ABC=_______度.
16.如图,AD∥BC,∠D=100°
CA平分∠BCD,则∠DAC=_______.
17.给出下列正多边形:
①正三角形;
②正方形;
③正六边形;
④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)
18.若│x2-25│+
=0,则x=_______,y=_______.
三、解答题:
本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.
19.解不等式组:
并把解集在数轴上表示出来.
20.解方程组:
21.如图,AD∥BC,AD平分∠EAC,你能确定∠B与∠C的数量关系吗?
请说明理由。
22.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°
∠D=42°
求∠ACD的度数.
23.如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)。
(1)请在图中作出△A′B′C′;
(2)写出点A′、B′、C′的坐标.
24.长沙市某公园的门票价格如下表所示:
购票人数
1~50人
51~100人
100人以上
票价
10元/人
8元/人
5元/人
某校九年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;
如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?
25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?
请设计出来.
答案:
(共30分)
BCCDD,CBBCD
(共24分)
11.±
7,7,-212.x≤6
13.三14.垂线段最短。
15.4016.400
17.①②③18.x=±
5,y=3
(共46分)
19.解:
第一个不等式可化为
x-3x+6≥4,其解集为x≤1.
第二个不等式可化为
2(2x-1)<5(x+1),
有4x-2<5x+5,其解集为x>-7.
∴原不等式组的解集为-7<x≤1.
把解集表示在数轴上为:
20.解:
原方程可化为
∴
两方程相减,可得37y+74=0,
∴y=-2.从而
.
因此,原方程组的解为
21.∠B=∠C。
理由:
∵AD∥BC
∴∠1=∠B,∠2=∠C
∵∠1=∠2
∴∠B=∠C
22.解:
因为∠AFE=90°
所以∠AEF=90°
-∠A=90°
-35°
=55°
.
所以∠CED=∠AEF=55°
所以∠ACD=180°
-∠CED-∠D
=180°
-55°
-42=83°
23.A′(2,3),B′(1,0),C′(5,1).
24.解:
设甲、乙两班分别有x、y人.
根据题意得
解得
故甲班有55人,乙班有48人.
25.解:
设用A型货厢x节,则用B型货厢(50-x)节,由题意,得
解得28≤x≤30.
因为x为整数,所以x只能取28,29,30.
相应地(5O-x)的值为22,21,20.
所以共有三种调运方案.
第一种调运方案:
用A型货厢28节,B型货厢22节;
第二种调运方案:
用A型货厢29节,B型货厢21节;
第三种调运方案:
用A型货厢30节,用B型货厢20节.