超声波论文剖析Word文档格式.docx

上传人:b****6 文档编号:20097557 上传时间:2023-01-16 格式:DOCX 页数:17 大小:240.54KB
下载 相关 举报
超声波论文剖析Word文档格式.docx_第1页
第1页 / 共17页
超声波论文剖析Word文档格式.docx_第2页
第2页 / 共17页
超声波论文剖析Word文档格式.docx_第3页
第3页 / 共17页
超声波论文剖析Word文档格式.docx_第4页
第4页 / 共17页
超声波论文剖析Word文档格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

超声波论文剖析Word文档格式.docx

《超声波论文剖析Word文档格式.docx》由会员分享,可在线阅读,更多相关《超声波论文剖析Word文档格式.docx(17页珍藏版)》请在冰豆网上搜索。

超声波论文剖析Word文档格式.docx

(浙江海洋学院数理与信息学院浙江舟山316000)

[摘要]:

 

超声波检测是指用超声波来检测材料和工件,并以超声波检测仪作为显示方式的一种无损检测方法。

选用超声波作为检测的原因是因为超声波声束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性。

其次,超声波在介质中传播过程中,会发生衰减和散射,且在异种介质的界面上将产生反射、折射和波型转换。

利用这些特性,可以获得从缺陷界面反射回来的反射波,从而达到探测缺陷的目的。

超声波在固体中的传输损失很小,探测深度大,由于超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。

如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,就会全部或部分反射。

反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。

可以根据波形的变化特征判断缺陷在工件重的深度、位置和形状。

本文主要介绍超声波探伤技术原理、方法及其性能,并介绍超声波探伤仪的发展。

了解一种超声波检测技术空气耦合式超声波检测技术,了解它发展存在的问题困难以及发展概况。

[关键词]:

超声波;

超生波检测;

超声波检测设备;

超声波检测技术

UITRASONICTESTING

WenLiangke

(SchoolofMathematics,Physics&

InformationScience,ZhejiangOceanUniversity

ZhouShan,316000)

Ultrasonictestingistheuseofultrasoundtodetectmaterialsandartifacts,anddisplayofultrasonicdetectorasanon-destructivetestingmethods.Useofultrasonictestingbecauseultrasonicbeamcanbefocusedonaspecificdirection,inthemediumtravelsinstraightlines,hasagooddirectivity.Secondly,theultrasonicpropagationinthemedium,theattenuationandscatteringwilloccur,andtheinterfaceinheterogeneousmediawillproducereflection,refractionandwave-typeconversion.Withthesefeatures,defectscanbeobtainedfromthereflectedwavesreflectedbackinterface,soastoachievethepurposeofdetectingdefects.Thetransmissionofultrasoundinsolidslossisverysmall,detectiondepth,theultrasoundwilloccurinheterogeneousinterfacereflection,refractionandotherphenomena,especiallynotbythegassolidinterface.Ifthemetalinpores,cracks,delimitationsandotherdefects(defectsinthegas),ormixed,ultrasonicwavetothemetalandtheinterfacedefects,theywillallorpartofthereflection.Thereflectedultrasoundreceivedbytheprobe,throughtheinstrumentinternalcircuitprocessing,thescreenintheinstrumentwillshowadifferentheightandacertaindistanceofthewaveform.Waveformvariationcandeterminethedepthofdefectsintheworkpieceweight,positionandshape.

Thispaperintroducestheprincipleofultrasonictestingtechniques,methodsandproperties,anddescribesthedevelopmentofultrasonicflawdetector.Understandingofanultrasonicdetectionofair-coupledultrasonicinspectiontechnology,understanditsdifficultproblemsinthedevelopmentandthedevelopmentofprofiles.

Keywords:

Ultrasonictesting;

Ultrasonictestingequipment;

ultrasonicwave;

ultrasonicinspectiontechnique

引言

超声波检测是指用超声波来检测材料和工件,并以超声波检测仪作为显示方式的一种无损检测方法。

工业上无损检测的方法之一。

超声波进入物体遇到缺陷时,一部分声波会产生反射,发射和接收器可对反射波进行分析,就能异常精确地测出缺陷来.并且能显示内部缺陷的位置和大小,测定材料厚度等。

超声波是频率大于 

20 

kHz 

的一种机械波(相对于频率范围在 

Hz 

~ 

的声波而言)。

超声波检测用的超声波,其频率范围一般在 

0.25 

MHz 

15 

之间。

用于金属材料超声波检测的超声波,其频率范围通常在 

0.5 

10 

之间;

而用于普通钢铁材料超声波检测的超声波,其频率范围通常为 

MHz。

超声波是频率高于20千赫的机械波。

在超声探伤中常用的频率为0.5~5兆赫。

这种机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射。

这种反射现象可被用来进行超声波探伤,最常用的是脉冲回波探伤法探伤时,脉冲振荡器发出的电压加在探头上(用压电陶瓷或石英晶片制成的探测元件),探头发出的超声波脉冲通过声耦合介质(如机油或水等)进入材料并在其中传播,遇到缺陷后,部分反射能量沿原途径返回探头,探头又将其转变为电脉冲,经仪器放大而显示在示波管的荧光屏上。

根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。

除回波法外,还有用另一探头在工件另一侧接受信号的穿透法。

利用超声法检测材料的物理特性时,还经常利用超声波在工件中的声速、衰减和共振等特性。

本文主要介绍超声波检测的原理、应用以及发展。

简单介绍超声波探伤技术原理、方法及其性能,并介绍超声波探伤仪的发展。

正文

1.超声波

我们知道,当物体振动时会发出声音。

科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。

人类耳朵能听到的声波频率为20~20,000赫兹。

因此,当物体的振动超过一定的频率,即高于人耳听阈上限时,人们便听不出来了,这样的声波称为“超声波”。

通常用于医学诊断的超声波频率为1~5兆赫。

超声波具有方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远等特点。

可用于测距,测速,清洗,焊接,碎石等

虽然说人类听不出超声波,但不少动物却有此本领。

它们可以利用超声波“导航”、追捕食物,或避开危险物。

大家可能看到过夏天的夜晚有许多蝙蝠在庭院里来回飞翔,它们为什么在没有光亮的情况下飞翔而不会迷失方向呢?

原因就是蝙蝠能发出2~10万赫兹的超声波,这好比是一座活动的“雷达站”。

蝙蝠正是利用这种“雷达”判断飞行前方是昆虫,或是障碍物的。

人类直到第一次世界大战才学会利用超声波,这就是利用“声纳”的原理来探测水中目标及其状态,如潜艇的位置等。

此时人们向水中发出一系列不同频率的超声波,然后记录与处理反射回声,从回声的特征便可以估计出探测物的距离、形态及其动态改变。

医学上最早利用超声波是在1942年,奥地利医生杜西克首次用超声技术扫描脑部结构;

以后到了60年代医生们开始将超声波应用于腹部器官的探测。

如今超声波扫描技术已成为现代医学诊断不可缺少的工具。

1.1超声波检测的原理

超声波检测是指用超声波来检测材料和工件、并以超声波检测仪作为显示方式的一种无损检测方法。

 

超声波是频率高于20千赫的机械波。

通常,超声波检测采用了不同的技术:

——按波源不同可分为:

连续波、脉冲波;

——按波型不同可分为:

纵波、横波、表面波、板波、爬波;

——按接收方式不同可分为:

回波(反射)、穿透;

——按耦合方式不同可分为:

接触式、液浸式;

——按探头数不同可分为:

单探头、双探头、多探头。

脉冲回波探伤法通常用于锻件、焊缝及铸件等的检测。

可发现工件内部较小的裂纹、夹渣、缩孔、未焊透等缺陷。

被探测物要求形状较简单,并有一定的表面光洁度。

为了成批地快速检查管材、棒材、钢板等型材,可采用配备有机械传送、自动报警、标记和分选装置的超声探伤系统。

除探伤外,超声波还可用于测定材料的厚度,使用较广泛的是数字式超声测厚仪,其原理与脉冲回波探伤法相同,可用来测定化工管道、船体钢板等易腐蚀物件的厚度。

利用测定超声波在材料中的声速、衰减或共振频率可测定金属材料的晶粒度、弹性模量(见拉伸试验)、硬度、内应力、钢的淬硬层深度、球墨铸铁的球化程度等。

此外,穿透式超声法在检验纤维增强塑料和蜂窝结构材料方面的应用也已日益广泛。

超声全息成象技术也在某些方面得到应用。

超声波检测法的优点是:

穿透能力较大,例如在钢中的有效探测深度可达1米以上;

对平面型缺陷如裂纹、夹层等,探伤灵敏度较高,并可测定缺陷的深度和相对大小;

设备轻便,操作安全,易于实现自动化检验。

缺点是:

不易检查形状复杂的工件,要求被检查表面有一定的光洁度,并需有耦合剂充填满探头和被检查表面之间的空隙,以保证充分的声耦合。

对于有些粗晶粒的铸件和焊缝,因易产生杂乱反射波而较难应用。

此外,超声波检测还要求有一定经验的检验人员来进行操作和判断检测结果。

超声波检测主要用于探侧试件的内部缺陷,它的应用十分广泛。

超声波检测属于反射波检测法,即根据反射波的强弱和传播时间来判断缺陷的大小和位置。

超声波检测的频率范围为0.4-25MHz,其中用得最多的是1~5MHz。

按超声波检测原理划分:

包括脉冲反射法、穿透法和共振法三种。

目前用得最多的是脉冲反射法。

按超声波探伤图形的显示方式划分:

有A型显示、B型显示、C型显示等。

目前用得最多的是A型显示探伤法。

按探伤波型分类,脉冲反射法大致可分为直射探伤法(纵波探伤法)、斜射探伤法(横波探伤法)、表面波探伤法和板波探伤法4种。

用的较多的是纵波和横波探伤法。

按探伤时使用的探头数目分:

有单探头法,双探头法,多探头法3种。

用得最多的是单探头法。

按接触方法分类:

有直接接触法和水浸法两种。

直接接触法的操作要领是,在探头和试件表面之间涂上耦合剂,以消除空隙,让超声波能顺利地进入被检工件。

耦合剂可以用机油、水、甘油或水玻璃等。

用水浸法时,探头和试件之间有水层,超声波通过水层传播,受表面状态影响不大,可以进行稳定的探伤。

1.2超声波检测的应用

超声波检测可应用于对接焊缝、角焊、板材、管材、棒材、锻件,以及复合材料等;

对面积型缺陷的检出率较高,对体积型缺陷的检出率较低;

适宜检测厚度较大的工件,检测成本较低、速度快、检测仪器携带方便。

其局限性在于无法得到缺陷直观图象、定性困难,定量精度不高;

检测结果无直接见证记录;

且对材质、晶粒度有一定要求。

 无损检测是现代工业许多领域中保证产品质量与性能、稳定生产工艺的重要手段。

当今世界各发达国家都越来越重视无损检测技术在国民经济各部门中的作用,日本最近制定的21世纪优先发展四大技术领域之一的设备延寿技术中,把无损检测放在十分重要的位置。

超声检测是一种重要的无损检测技术,由于它的穿透能力强、对人体无害,已较广泛应用于工业及高技术产业中。

近期召开的国际与全国性无损检测学术会议上,超声检测方面(含声发射)的论文数量都几乎占到总数的一半,成为学术研究的活跃分支。

十余年来推动超声检测发展的主要因素是①工业生产中的质量意识不断提高以及在役设备寿命预测技术的要求。

②诸如复合材料和精细陶瓷等新材料的应用,使传统的超声检测方法遇到障碍,促使人们探索采用若干特殊的超声检测途径。

③微机技术的3国家自然科学基金(批准号19574039及19604010)与国家教委跨世纪优秀人才培养计划项目突飞进带动了传统超声检测技术水平的提高,使其获得的结果更直观可靠,还能方便地以二维或三维形式成象。

④现代信息科学为超声检测的发展注入了新的活力,由此可对一些复杂的检测信号与过程作出迅速有效的提取与解读。

⑤特殊的构件对超声检测提出了非接触的要求,促使超声检测从换能方法上有了新的突破。

超声波检测在医学上也有应用。

人耳的听觉范围有限度,只能对16-20000赫兹的声音有感觉,20000赫兹以上的声音就无法听到,这种声音称为超声。

和普通的声音一样,超声能向一定方向传播,而且可以穿透物体,如果碰到障碍,就会产生回声,不相同的障碍物就会产生不相同的回声,人们通过仪器将这种回声收集并显示在屏幕上,可以用来了解物体的内部结构。

利用这种原理,人们将超声波用于诊断和治疗人体疾病。

在医学临床上应用的超声诊断仪的许多类型,如A型、B型、M型、扇形和多普勒超声型等。

B型是其中一种,而且是临床上应用最广泛和简便的一种。

通过B超可获得人体内脏各器官的各种切面图形比较清晰。

B超比较适用于肝、胆肾、膀胱、子宫、卵巢等多种脏器疾病的诊断。

B超检查的价格也比较便宜,又无不良反应,可反复检查。

当我们去医院看病的时候,经常会碰到医生在诊治之初,就要求作一次B超检查。

所谓的B超就是超声波的B型显示切面成像方法的简称。

2.超声波探伤

超声波探伤是无损检验的一种方法。

常用探伤方法有:

接触法、液浸法、反射法、穿透法。

广泛用于锅炉、高压容器、船舶、航空、航天、铁路、桥梁建筑、化工机械、冶金、原材料等非破坏性检测。

优点是灵敏度高、穿透力强、探伤灵活、仪器轻便、效率高、成本低,对人体无害。

超声波探伤可把探伤工作做得更快、更准确、更可靠。

可靠是非常重要的,是一切检测工作的生命线,不可靠的检测可能比没有检测更危险。

2.1超声波探伤仪工作原理

发射部分定时重复产生激励电脉冲。

激励电脉冲的幅度一般为几百伏到一千多伏。

它经压电换能器转换为超声脉冲。

超声脉冲在被检测工件中传播、反射。

反射脉冲传到接收换能器被转换成电脉冲,传给探伤仪的接收部分。

由于接收到的电脉冲可能很强,也可能很弱,故接收部分既能用衰减器把强信号减弱到几万分之一,也能用放大器把弱信号放大几万倍。

接收部分把这些脉冲放大或衰减后,传给显示部分显示在荧光屏上。

在荧光屏上,横坐标与声波传播时间成正比,纵坐标与脉冲幅度成反比。

原理图如图2-1所示。

图2-1超声波探伤原理图

Figure2-1Schematicdiagramofultrasonicflawdetection

2.2超声波探伤可靠性的实现

超声波探伤仪的可靠性和稳定性作为探伤的原则,开展对探伤仪的检定工作,可以大大提高探伤工作的可靠性。

超声波探伤仪的检定依据JJG746—1991《超声探伤仪》检定规程。

对超声波探伤仪的主要性能———垂直线性、水平线性、衰减误差、动态范围以及最大使用灵敏度等进行检定。

另外对比试块材料与受检件的成分,组织声学特性应一致或相似。

对比试块材料的内部纯净度利用入射角为0°

的直射超声波,在规定的工作频率和灵敏度下进行扫查,不得有大于或等于比受检件材料允许的噪声低6dB的任何信号。

对比试块每5年应检定一次。

2.3超声波探伤稳定性的实现

2.31探伤方法

探伤方法是保证探伤结果准确与否的前提条件。

因此根据工件的形状、缺陷特点、材料性质及探伤要求,准确无误地进行探伤。

2.32耦合剂的影响

耦合是实现声能传递的必由途径,耦合剂是探头声源与工件这两种固体之间实现声能传递、保证软接触所必需的传声介质,它在二者界面上排除空气,填充不平的凹坑和间隙,并兼有防磨损、方便移动的功能。

耦合损耗与耦合层厚度d及耦合层中超声波波长λ有关。

图2-22125MHz直探头用锭子油作耦合剂时测得耦合层厚度与回波高度之间关系曲线。

从图2-2中可以看出,在d<

λ/4范围内,随d/λ的增大,耦合损耗增大,在d=λ/4时,耦合损耗最大。

在d=(2n-1)λ/4时,耦合损耗均较大,声能透过率较小,当d=n·

λ/2时,声能透过率较大,耦合图损耗较小。

常用的耦合剂有机油、柴油、变压器油、锭子油、水、甘油、浆糊等。

图2-2耦合层厚度与回波高度之间关系图

Figure2-2Highdegreeofcouplingbetweenthethicknessandechograph

2.33检验面的要求

探测面的粗糙度也是影响耦合损耗的因素。

图2-3为使用不同声阻抗耦合剂时工件表面粗糙度对回波高度的影响,横坐标为表面粗糙度的平均高度Rz,它决定了耦合层的厚度,即d=Rz。

图2-3表面粗糙度、耦合剂声阻抗对耦合损耗的影响图

Table2-3Surfaceroughness,theacousticimpedanceofthecouplingagentinfluencediagramofthecouplingloss

由图2-3可知,耦合剂声阻抗越大,越接近于晶片和工件的声阻抗,工件表面粗糙度越小,即光洁度越高,则耦合损耗越小,透声性能越好。

探伤的工件表面加工粗糙度:

接触法对于A级检验应等于或优于Ra312μm,对于B级检验应等于或优于Ra613μm,液浸法粗糙度应等于或优于Ra25μm。

2.34工作频率的选择

工作频率的选择是由被测材料的性质和探伤要求决定的,对铸铁、未锻件等可选用较低频率,如1125MHz;

对晶粒度细的材料,如锻钢、拉拔铝制件等则用215MHz、5MHz甚至10MHz。

工作频率高,则探伤灵敏度高、方向性好、分辨能力强、始波宽度小等,有利于发现和评定缺陷;

但频率高不易穿透晶粒度较粗的工件。

而工作频率低则分辨率也较低,但穿透力强有利于克服材料的衰减。

一般常用工作频率为215MHz和5MHz。

2.35探头类型的选择

探头类型的选择应根据工件可能产生缺陷的部位和方向、工件的几何形状和探测面情况进行选择。

探头晶片尺寸较大时,探头入射至反射体的能量也大,即有p=p0πD2/4λS;

又因θ=sin-11122λ/D故D大时指向角较小、声束指向性好,能量相对集中,发现远距离小缺陷能力强,即远场检测灵敏度较高,适于厚度工件探伤。

反之,晶片尺寸较小时,近场短,且近距离声束较窄,有利于缺陷定位。

但远场声束扩散大,故宜用于较小厚度工件探件。

如图2-4所示。

图2-4不同晶片尺寸所产生的场扩散情况图

Figure2-4Chipsizeproducedbydifferentspreadofthefieldmap

2.4AVG线图的应用

2.41通用AVG线图的应用

AVG曲线描述了距离—增益量—缺陷尺寸三者之间的关系,它能方便地用来进行缺陷当量的计算,所以它是一种主要的缺陷定量方法。

相对缺陷距离A,是以探头近场长度N为单位来衡量的反射体距离,即A=N/S。

通用AVG线图中以A作为横坐标,并用常用对数来刻度。

相对缺陷尺寸G,是以探头晶片直径D为单位来衡量的反射体直径,即G=Φ/D。

通用AVG线图中对应一个G就有一条相应的曲线,相邻G值之间的变化也是常用对数规律。

波幅增益量V(单位dB),它表示反射声压相对于起始声压的dB值。

通用AVG线图中以V(单位dB)作为纵坐标,采用十进制常用坐标。

图2-5为平底孔AVG线图。

图2-5平底孔AVG线图

Figure2-

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1