《运筹学》期末复习及答案Word下载.docx

上传人:b****6 文档编号:20094042 上传时间:2023-01-16 格式:DOCX 页数:19 大小:28.76KB
下载 相关 举报
《运筹学》期末复习及答案Word下载.docx_第1页
第1页 / 共19页
《运筹学》期末复习及答案Word下载.docx_第2页
第2页 / 共19页
《运筹学》期末复习及答案Word下载.docx_第3页
第3页 / 共19页
《运筹学》期末复习及答案Word下载.docx_第4页
第4页 / 共19页
《运筹学》期末复习及答案Word下载.docx_第5页
第5页 / 共19页
点击查看更多>>
下载资源
资源描述

《运筹学》期末复习及答案Word下载.docx

《《运筹学》期末复习及答案Word下载.docx》由会员分享,可在线阅读,更多相关《《运筹学》期末复习及答案Word下载.docx(19页珍藏版)》请在冰豆网上搜索。

《运筹学》期末复习及答案Word下载.docx

D非负

24、运筹学研究与解决问题的效果具有(A)

A连续性 

B整体性 

C阶段性 

D再生性

25、运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

可以说这个过程就是一个(C)

A解决问题过程 

B分析问题过程 

C科学决策过程 

D前期预策过程

26、从趋势上瞧,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的就是(C)

A数理统计 

B概率论 

C计算机 

D管理科学

27、用运筹学解决问题时,要对问题进行(B)

A分析与考察 

B分析与定义 

C分析与判断 

D分析与实验

三、多选

28模型中目标可能为(ABCDE)

A输入最少 

B输出最大 

C成本最小 

D收益最大 

E时间最短

29运筹学的主要分支包括(ABDE)

A图论 

B线性规划 

C非线性规划 

D整数规划 

E目标规划

四、简答

30.运筹学的计划法包括的步骤。

答:

观察、建立可选择的解、用实验选择最优解、确定实际问题

31.运筹学分析与解决问题一般要经过哪些步骤?

一、观察待决策问题所处的环境 

二、分析与定义待决策的问题

三、拟订模型 

四、选择输入数据 

五、求解并验证解的合理性

六、实施最优解

32.运筹学的数学模型有哪些优缺点?

优点:

(1).通过模型可以为所要考虑的问题提供一个参考轮廓,指出不能直接瞧出的结果。

(2).花节省时间与费用。

(3).模型使人们可以根据过去与现在的信息进行预测,可用于教育训练,训练人们瞧到她们决策的结果,而不必作出实际的决策。

(4).数学模型有能力揭示一个问题的抽象概念,从而能更简明地揭示出问题的本质。

(5).数学模型便于利用计算机处理一个模型的主要变量与因素,并易于了解一个变量对其她变量的影响。

模型的缺点

(1).数学模型的缺点之一就是模型可能过分简化,因而不能正确反映实际情况。

(2).模型受设计人员的水平的限制,模型无法超越设计人员对问题的理解。

(3).创造模型有时需要付出较高的代价。

33.运筹学的系统特征就是什么?

运筹学的系统特征可以概括为以下四点:

一、用系统的观点研究功能关系二、应用各学科交叉的方法 

三、采用计划方法 

四、为进一步研究揭露新问题

34、线性规划数学模型具备哪几个要素?

 

(1)、求一组决策变量xi或xij的值(i=1,2,…m

j=1,2…n)使目标函数达到极大或极小;

(2)、表示约束条件的数学式都就是线性等式或不等式;

(3)、表示问题最优化指标的目标函数都就是决策变量的线性函数

线性规划的基本概念

35.线性规划问题就是求一个线性目标函数_在一组线性约束条件下的极值问题。

36.图解法适用于含有两个变量的线性规划问题。

37.线性规划问题的可行解就是指满足所有约束条件的解。

38.在线性规划问题的基本解中,所有的非基变量等于零。

39.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关

40.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

41.线性规划问题有可行解,则必有基可行解。

42.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

43.满足非负条件的基本解称为基本可行解。

44.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

45.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

46.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

47.线性规划问题可分为目标函数求极大值与极小_值两类。

48.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

49.线性规划问题的基可行解与可行域顶点的关系就是顶点多于基可行解

50.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都就是最优解。

51.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

52、如果某个约束条件就是“≤”情形,若化为标准形式,需要引入一松弛变量。

53、如果某个变量Xj为自由变量,则应引进两个非负变量Xj′,Xj〞,同时令Xj=Xj′-Xj。

54、表达线性规划的简式中目标函数为max(min)Z=∑cijxij。

55、、线性规划一般表达式中,aij表示该元素位置在i行j列。

56.如果一个线性规划问题有n个变量,m个约束方程(m<

n),系数矩阵的数为m,则基可行解的个数最为_C_。

A.m个 

B.n个 

C.Cnm 

D.Cmn个

57.线性规划模型不包括下列_D要素。

A.目标函数 

B.约束条件 

C.决策变量 

D.状态变量

58.线性规划模型中增加一个约束条件,可行域的范围一般将_B_。

A.增大 

B.缩小 

C.不变 

D.不定

59.若针对实际问题建立的线性规划模型的解就是无界的,不可能的原因就是B__。

A.出现矛盾的条件 

B.缺乏必要的条件 

C.有多余的条件 

D.有相同的条件

60.在下列线性规划问题的基本解中,属于基可行解的就是B

A.(一1,0,0,0) 

B.(1,0,3,0) 

C.(一4,0,0,3) 

D.(0,一1,0,5)

61.关于线性规划模型的可行域,下面_B_的叙述正确。

A.可行域内必有无穷多个点B.可行域必有界C.可行域内必然包括原点D.可行域必就是凸的

62.下列关于可行解,基本解,基可行解的说法错误的就是_D__、

A.可行解中包含基可行解 

B.可行解与基本解之间无交集

C.线性规划问题有可行解必有基可行解 

D.满足非负约束条件的基本解为基可行解

63、线性规划问题有可行解,则A

A必有基可行解 

B必有唯一最优解 

C无基可行解 

D无唯一最优解

64、线性规划问题有可行解且凸多边形无界,这时C

A没有无界解 

B没有可行解 

C有无界解 

D有有限最优解

65、若目标函数为求max,一个基可行解比另一个基可行解更好的标志就是A

A使Z更大 

B使Z更小 

C绝对值更大 

DZ绝对值更小

12、如果线性规划问题有可行解,那么该解必须满足D

A所有约束条件 

B变量取值非负 

C所有等式要求 

D所有不等式要求

66、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在D集合中进行搜索即可得到最优解。

A基 

B基本解 

C基可行解 

D可行域

67、线性规划问题就是针对D求极值问题、

A约束 

B决策变量 

C秩 

D目标函数

68如果第K个约束条件就是“≤”情形,若化为标准形式,需要B

A左边增加一个变量 

B右边增加一个变量 

C左边减去一个变量 

D右边减去一个变量

69、若某个bk≤0,化为标准形式时原不等式D

A不变 

B左端乘负1 

C右端乘负1 

D两边乘负1

70、为化为标准形式而引入的松弛变量在目标函数中的系数应为A

3

71、若线性规划问题没有可行解,可行解集就是空集,则此问题B

A没有无穷多最优解 

B没有最优解 

C有无界解D有无界解

三、多选题

72.

在线性规划问题的标准形式中,不可能存在的变量就是D、

A.可控变量B.松驰变量c.剩余变量D.人工变量

73.下列选项中符合线性规划模型标准形式要求的有BCD

A.目标函数求极小值B.右端常数非负C.变量非负D.约束条件为等式E.约束条件为“≤”的不等式

74.某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m<

n)则下列说法正确的就是ABDE。

A.基可行解的非零分量的个数不大于mB.基本解的个数不会超过Cmn个C.该问题不会出现退化现象D.基可行解的个数不超过基本解的个数E.该问题的基就是一个m×

m阶方阵

75.若线性规划问题的可行域就是无界的,则该问题可能ABCD

A.无有限最优解B.有有限最优解C.有唯一最优解D.有无穷多个最优解E.有有限多个最优解

76.判断下列数学模型,哪些为线性规划模型(模型中a.b.c为常数;

θ为可取某一常数值的参变量,x,Y为变量)ACDE

77.下列说法错误的有_ABD_。

A.基本解就是大于零的解

B.极点与基解一一对应

C.线性规划问题的最优解就是唯一的

D.满足约束条件的解就就是线性规划的可行解

78、在线性规划的一般表达式中,变量xij为ABE

A大于等于0B小于等于0 

C大于0 

D小于0 

E等于0

79、在线性规划的一般表达式中,线性约束的表现有CDE

A< 

B> 

≤ 

≥ 

=

80、若某线性规划问题有无界解,应满足的条件有AD

Pk<0 

B非基变量检验数为零 

C基变量中没有人工变量 

Dδj>O 

E所有δj≤0

81、在线性规划问题中a23表示AE

i=2 

i=3 

i=5 

j=2 

j=3

82、线性规划问题若有最优解,则最优解AD

A定在其可行域顶点达到 

B只有一个 

C会有无穷多个 

D唯一或无穷多个 

E其值为0

83、线性规划模型包括的要素有CDE

B.约束条件 

C.决策变量 

D状态变量 

E环境变量

四、名词

84基:

在线性规划问题中,约束方程组的系数矩阵A的任意一个m×

m阶的非奇异子方阵B,称为线性规划问题的一个基。

85、线性规划问题:

就就是求一个线性目标函数在一组线性约束条件下的极值问题。

86、可行解:

在线性规划问题中,凡满足所有约束条件的解称为线性规划问题可行解

87、可行域:

线性规划问题的可行解集合。

88、基本解:

在线性约束方程组中,对于选定的基B令所有的非基变量等于零,得到的解,称为线性规划问题的一个基本解。

89、、图解法:

对于只有两个变量的线性规划问题,可以用在平面上作图的方法来求解,这种方法称为图解法。

90、基本可行解:

在线性规划问题中,满足非负约束条件的基本解称为基本可行解。

91、模型就是一件实际事物或实际情况的代表或抽象,它根据因果显示出行动与反映的关系与客观事物的内在联系。

线性规划的基本方法

93.线性规划的代数解法主要利用了代数消元法的原理,实现基可行解的转换,寻找最优解。

94.标准形线性规划典式的目标函数的矩阵形式就是_maxz=cbb-1b+(cn-cbb-1n)xn。

95.对于目标函数极大值型的线性规划问题,用单纯型法求解时,当基变量检验数δj_≤_0时,当前解为最优解。

96.用大m法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为-m。

97.在单纯形迭代中,可以根据最终_表中人工变量不为零就可以判断线性规划问题无解。

98.在线性规划典式中,所有基变量的目标系数为0。

99.当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入人工变量构造可行基。

100.在单纯形迭代中,选出基变量时应遵循最小比值θ法则。

101.线性规划典式的特点就是基为单位矩阵,基变量的目标函数系数为0。

102.对于目标函数求极大值线性规划问题在非基变量的检验数全部δj≤o、问题无界时,问题无解时情况下,单纯形迭代应停止。

103.在单纯形迭代过程中,若有某个δk>

0对应的非基变量xk的系数列向量pk_≤0_时,则此问题就是无界的。

104.在线性规划问题的典式中,基变量的系数列向量为单位列向量_

105、对于求极小值而言,人工变量在目标函数中的系数应取-1

106 

单纯形法解基的形成来源共有三种

107、在大m法中,m表示充分大的正数。

108.线性规划问题在单纯形迭代中,出基变量在紧接着的下一次迭代中b立即进入基底。

a.会 

b.不会 

c.有可能 

d.不一定

109.在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中b。

a.不影响解的可行性b.至少有一个基变量的值为负c.找不到出基变量d.找不到进基变量

110.用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其她非基变量检验数全部<

0,则说明本问题b。

a.有惟一最优解 

b.有多重最优解 

c.无界 

d.无解

111.下列说法错误的就是b

a.图解法与单纯形法从几何理解上就是一致的 

b.在单纯形迭代中,进基变量可以任选

c.在单纯形迭代中,出基变量必须按最小比值法则选取d.人工变量离开基底后,不会再进基

112、单纯形法当中,入基变量的确定应选择检验数c

a绝对值最大 

b绝对值最小 

c正值最大 

d负值最小

113、在单纯形表的终表中,若若非基变量的检验数有0,那么最优解a

a不存在 

b唯一 

无穷多 

无穷大

114、若在单纯形法迭代中,有两个q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将就是c

a先优后劣 

b先劣后优 

c相同 

d会随目标函数而改变

115、若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入c

a松弛变量 

b剩余变量 

c人工变量 

d自由变量

116、在线性规划问题的典式中,基变量的系数列向量为d

a单位阵 

b非单位阵 

c单位行向量 

d单位列向量

117、在约束方程中引入人工变量的目的就是d

a体现变量的多样性 

b变不等式为等式 

c使目标函数为最优 

d形成一个单位阵

118、出基变量的含义就是d

a该变量取值不变 

b该变量取值增大 

c由0值上升为某值 

d由某值下降为0

119、在我们所使用的教材中对单纯形目标函数的讨论都就是针对b

情况而言的。

amin 

bmax 

cmin+max 

dmin,max任选

120、求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤o,且基变量中有人工变量时该问题有b

a无界解 

b无可行解 

c唯一最优解 

d无穷多最优解

121.对取值无约束的变量xj。

通常令xj=xj’-x”j,其中xj’≥0,xj”≥0,在用单纯形法求得的最优解中,可能出现的就是abc

122.线性规划问题maxz=x1+cx2

其中4≤c≤6,一1≤a≤3,10≤b≤12,则当_bc时,该问题的最优目标函数值分别达到上界或下界。

a.c=6a=-1b=10 

b.c=6a=-1b=12 

c.c=4a=3b=12d.c=4a=3b=12e.c=6a=3b=12

123.设x

(1),x

(2)就是用单纯形法求得的某一线性规划问题的最优解,则说明acde。

a.此问题有无穷多最优解b.该问题就是退化问题

c.此问题的全部最优解可表示为λx

(1)+(1一λ)x

(2),其中0≤λ≤1

d.x

(1),x

(2)就是两个基可行解e.x

(1),x

(2)的基变量个数相同

124.某线性规划问题,含有n个变量,m个约束方程,(m<

n),系数矩阵的秩为m,则abd。

a.该问题的典式不超过cnm个 

b.基可行解中的基变量的个数为m个 

c.该问题一定存在可行解 

d.该问题的基至多有cnm=1个e.该问题有111个基可行解

125.单纯形法中,在进行换基运算时,应acde。

a.先选取进基变量,再选取出基变量 

b.先选出基变量,再选进基变量

c.进基变量的系数列向量应化为单位向量 

d.旋转变换时采用的矩阵的初等行变换e.出基变量的选取就是根据最小比值法则

126.从一张单纯形表中可以瞧出的内容有abce。

a.一个基可行解 

b.当前解就是否为最优解 

c.线性规划问题就是否出现退化d.线性规划问题的最优解e.线性规划问题就是否无界

127、单纯形表迭代停止的条件为(ab)

a所有δj均小于等于0 

b所有δj均小于等于0且有aik≤0 

c所有aik>0 

所有bi≤0

128、下列解中可能成为最优解的有(abcde)

a基可行解 

b迭代一次的改进解 

c迭代两次的改进解 

d迭代三次的改进解

所有检验数均小于等于0且解中无人工变量

129、若某线性规划问题有无穷多最优解,应满足的条件有(bce)

apk<pk0 

b非基变量检验数为零 

c基变量中没有人工变量 

dδj<o 

e所有δj≤0

130、下列解中可能成为最优解的有(abcde)

a基可行解 

b迭代一次的改进解 

d迭代三次的改进解e所有检验数均小于等于0且解中无人工变量

四、名词、简答

131、人造初始可行基:

当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。

132、单纯形法解题的基本思路?

可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。

线性规划的对偶理论

133.线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦然。

134.在一对对偶问题中,原问题的约束条件的右端常数就是对偶问题的目标函数系数。

135.如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。

136.对偶问题的对偶问题就是原问题_。

137.若原问题可行,但目标函数无界,则对偶问题不可行。

138.若某种资源的影子价格等于k。

在其她条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3个单位时。

相应的目标函数值将增加3k。

139.线性规划问题的最优基为b,基变量的目标系数为cb,则其对偶问题的最优解y﹡=cbb-1。

140.若x﹡与y﹡分别就是线性规划的原问题与对偶问题的最优解,则有cx﹡=y﹡b。

141.若x、y分别就是线性规划的原问题与对偶问题的可行解,则有cx≤yb。

142.若x﹡与y﹡分别就是线性规划的原问题与对偶问题的最优解,则有cx﹡=y*b。

143.设线性规划的原问题为maxz=cx,ax≤b,x≥0,则其对偶问题为min=yb 

ya≥c 

y≥0_。

144.影子价格实际上就是与原问题各约束条件相联系的对偶变量的数量表现。

145.线性规划的原问题的约束条件系数矩阵为a,则其对偶问题的约束条件系数矩阵为at。

146.在对偶单纯形法迭代中,若某bi<

0,且所有的aij≥0(j=1,2,…n),则原问题_无解。

147.线性规划原问题的目标函数为求极小值型,若其某个变量小于等于0,则其对偶问题约束条件为a形式。

a.“≥” 

b.“≤” 

c,“>

” 

d.“=”

148.对偶单纯形法的迭代就是从_a_开始的。

a.正则解 

b.最优解 

c.可行解 

d.基本解

149.如果z。

就是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡a。

a.w﹡=z﹡ 

b.w﹡≠z﹡ 

c.w﹡≤z﹡ 

d.w﹡≥z﹡

150.如果某种资源的影子价格大于其市场价格,则说明_b

a.该资源过剩b.该资源稀缺c.企业应尽快处理该资源d.企业应充分利用该资源,开僻新的生产途径

151.在一对对偶问题中,可能存在的情况就是abc。

a.一个问题有可行解,另一个问题无可行解

b.两个问题都有可行解

c.两个问题都无可行解

d.一个问题无界,另一个问题可行

152.下列说法错误的就是b

a.任何线性规划问题都有一个与之对应的对偶问题

b.对偶问题无可行解时,其原问题的目标函数无界。

c.若原问题为maxz=cx,ax≤b,x≥0,则对偶问题为minw=yb,ya≥c,y≥0。

d.若原问题有可行解,但目标函数无界,其对偶问题无可行解。

153.如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正确的就是bcde。

a原问题的约束条件“≥”,对应的对偶变量“≥0”

b原问题的约束条件为“=”,对应的对偶变量为自由变量

c.原问题的变量“≥0”,对应的对偶约束“≥”

d.原问题的变量“≤o”对应的对偶约束“≤”

e.原问题的变量无符号限制,对应的对偶约束“=”

154.一对互为对偶的问题存在最优解,则在其最优点处有bd

a.若某个变量取值为0,则对应的对偶约束为严格的不等式

b.若某个变量取值为正,则相应的对偶约束必为等式

c.若某个约束为等式,则相应的对偶变取值为正

d.若某个约束为严格的不等式,则相应的对偶变量取值为0

e.若某个约束为等式,则相应的对偶变量取值为0

155.下列有关对偶单纯形法的说法正确的就是abcd。

a.在迭代过程中应先选出基变量,再选进基变量

b.当迭代中得到的解满足原始可行性条件时,即得到最优解

c.初始单纯形表中填列的就是一个正则解

d.初始解不需要满足可行性

e.初始解必须就是可行的。

156.根据对偶理论,在求解线性规划的原问题时,可以得到以下结论acd。

a.对偶问题的解

b.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > 计算机硬件及网络

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1