工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx

上传人:b****6 文档编号:20006575 上传时间:2023-01-14 格式:DOCX 页数:17 大小:182.85KB
下载 相关 举报
工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx_第1页
第1页 / 共17页
工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx_第2页
第2页 / 共17页
工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx_第3页
第3页 / 共17页
工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx_第4页
第4页 / 共17页
工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx_第5页
第5页 / 共17页
点击查看更多>>
下载资源
资源描述

工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx

《工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx(17页珍藏版)》请在冰豆网上搜索。

工程热力学和制冷循环外文翻译本科学位论文Word文档格式.docx

240112608

班级:

K暖通111

Class:

K-Nuantong111

所在学院:

康尼学院

College:

KangniCollege

专业:

建筑环境与设备工程

Profession:

BuildingEnvironmentandEquipmentEngineering

指导教师:

Tutor:

LiuMinghui

2015年3月7日

CHAPTER1

THERMODYNAMICSANDREFRIGERATIONCYCLES

THERMODYNAMICS...................................................................1.1

FirstLawofThermodynamics.........................................................1.2

SecondLawofThermodynamics.....................................................1.2

ThermodynamicAnalysisofRefrigerationCycles...........................1.3

EquationsofState..............................................................................1.3

CalculatingThermodynamicProperties.............................................1.4

COMPRESSIONREFRIGERATIONCYCLES................................1.6

CarnotCycle........................................................................................1.6

TheoreticalSingle-StageCycleUsingaPureRefrigerant

orAzeotropicMixture..................................................................1.8

LorenzRefrigerationCycle...................................................................1.9

TheoreticalSingle-StageCycleUsingZeotropic

RefrigerantMixture.....................................................................1.10

MultistageVaporCompressionRefrigerationCycles........................1.10

ActualRefrigerationSystems................................................................1.12

ABSORPTIONREFRIGERATIONCYCLES.....................................1.14

IdealThermalCycle..............................................................................1.14

WorkingFluidPhaseChangeConstraints...............................................1.14

WorkingFluids.......................................................................................1.15

AbsorptionCycleRepresentations..........................................................1.16

ConceptualizingtheCycle.......................................................................1.16

AbsorptionCycleModeling.....................................................................1.17

Ammonia-WaterAbsorptionCycles........................................................1.19

NomenclatureforExamples....................................................................1.20

THERMODYNAMICSisthestudyofenergy,itstransformations,anditsrelationtostatesofmatter.Thischaptercoverstheapplicationofthermodynamicstorefrigerationcycles.Thefirstpartreviewsthefirstandsecondlawsofthermodynamicsandpresentsmethodsforcalculatingthermodynamicproperties.Thesecondandthirdpartsaddresscompressionandabsorptionrefrigerationcycles,twocommonmethodsofthermalenergytransfer.

THERMODYNAMICS

Athermodynamicsystemisaregioninspaceoraquantityofmatterboundedbyaclosedsurface.Thesurroundingsincludeeverythingexternaltothesystem,andthesystemisseparatedfrom

thesurroundingsbythesystemboundaries.Theseboundariescanbemovableorfixed,realorimaginary.Entropyandenergyareimportantinanythermodynamicsystem.Entropymeasuresthemoleculardisorderofasystem.Themoremixedasystem,thegreateritsentropy;

anorderlyorunmixedconfigurationisoneoflowentropy.Energyhasthecapacityforproducinganeffectandcanbecategorizedintoeitherstoredortransientforms.

StoredEnergy

Thermal(internal)energyiscausedbythemotionofmoleculesand/orintermolecularforces.

Potentialenergy(PE)iscausedbyattractiveforcesexistingbetweenmolecules,ortheelevationofthesystem.

(1)

where

m=mass

g=localaccelerationofgravity

z=elevationabovehorizontalreferenceplane

Kineticenergy(KE)istheenergycausedbythevelocityofmoleculesandisexpressedas

(2)

where

Visthevelocityofafluidstreamcrossingthesystemboundary.

Chemicalenergyiscausedbythearrangementofatomscomposingthemolecules.

Nuclear(atomic)energyderivesfromthecohesiveforcesholdingprotonsandneutronstogetherastheatom’snucleus.

EnergyinTransition

HeatQisthemechanismthattransfersenergyacrosstheboundariesofsystemswithdifferingtemperatures,alwaystowardthelowertemperature.Heatispositivewhenenergyisaddedtothesystem(seeFigure1).

Workisthemechanismthattransfersenergyacrosstheboundariesofsystemswithdifferingpressures(orforceofanykind),alwaystowardthelowerpressure.Ifthetotaleffectproducedinthesystemcanbereducedtotheraisingofaweight,thennothingbutworkhascrossedtheboundary.Workispositivewhenenergyisremovedfromthesystem(seeFigure1).

MechanicalorshaftworkWistheenergydeliveredorabsorbedbyamechanism,suchasaturbine,aircompressor,orinternalcombustionengine.

Flowworkisenergycarriedintoortransmittedacrossthesystemboundarybecauseapumpingprocessoccurssomewhereoutsidethesystem,causingfluidtoenterthesystem.Itcanbe

moreeasilyunderstoodastheworkdonebythefluidjustoutsidethesystemontheadjacentfluidenteringthesystemtoforceorpushitintothesystem.Flowworkalsooccursasfluidleavesthe

system.

Flowwork=pv(3)

wherepisthepressureandvisthespecificvolume,orthevolumedisplacedperunitmassevaluatedattheinletorexit.

Apropertyofasystemisanyobservablecharacteristicofthesystem.Thestateofasystemisdefinedbyspecifyingtheminimumsetofindependentproperties.ThemostcommonthermodynamicpropertiesaretemperatureT,pressurep,andspecificvolumevordensityρ.Additionalthermodynamicpropertiesincludeentropy,storedformsofenergy,andenthalpy.

Frequently,thermodynamicpropertiescombinetoformotherproperties.Enthalpyhisanimportantpropertythatincludesinternalenergyandflowworkandisdefinedas

(4)

whereuistheinternalenergyperunitmass.

Eachpropertyinagivenstatehasonlyonedefinitevalue,andanypropertyalwayshasthesamevalueforagivenstate,regardlessofhowthesubstancearrivedatthatstate.

Aprocessisachangeinstatethatcanbedefinedasanychangeinthepropertiesofasystem.Aprocessisdescribedbyspecifyingtheinitialandfinalequilibriumstates,thepath(ifidentifiable),andtheinteractionsthattakeplaceacrosssystemboundariesduringthe

process.

Acycleisaprocessoraseriesofprocesseswhereintheinitialandfinalstatesofthesystemareidentical.Therefore,attheconclusionofacycle,allthepropertieshavethesamevaluetheyhadatthebeginning.Refrigerantcirculatinginaclosedsystemundergoesa

cycle.

Apuresubstancehasahomogeneousandinvariablechemicalcomposition.Itcanexistinmorethanonephase,butthechemicalcompositionisthesameinallphases.

Ifasubstanceisliquidatthesaturationtemperatureandpressure,itiscalledasaturatedliquid.Ifthetemperatureoftheliquidislowerthanthesaturationtemperaturefortheexistingpressure,itiscalledeitherasubcooledliquid(thetemperatureislowerthanthesaturationtemperatureforthegivenpressure)oracompressedliquid(thepressureisgreaterthanthesaturationpressureforthegiventemperature).

Whenasubstanceexistsaspartliquidandpartvaporatthesaturationtemperature,itsqualityisdefinedastheratioofthemassofvaportothetotalmass.Qualityhasmeaningonlywhenthesubstanceissaturated(i.e.,atsaturationpressureandtemperature).Pressureandtemperatureofsaturatedsubstancesarenotindependentproperties.

Ifasubstanceexistsasavaporatsaturationtemperatureandpressure,itiscalledasaturatedvapor.(Sometimesthetermdrysaturatedvaporisusedtoemphasizethatthequalityis100%.)

Whenthevaporisatatemperaturegreaterthanthesaturationtemperature,itisasuperheatedvapor.Pressureandtemperatureofasuperheatedvaporareindependentproperties,becausethetemperaturecanincreasewhilepressureremainsconstant.Gasessuchasairatroomtemperatureandpressurearehighlysuperheatedvapors.

FIRSTLAWOFTHERMODYNAMICS

Thefirstlawofthermodynamicsisoftencalledthelawofconservationofenergy.Thefollowingformofthefirst-lawequationisvalidonlyintheabsenceofanuclearorchemicalreaction.

Basedonthefirstlaworthelawofconservationofenergyforanysystem,openorclosed,thereisanenergybalanceas

NetamountofenergyNetincreaseofstored

=

addedtosystemenergyinsystem

or

[Energyin]–[Energyout]=[Increaseofstoredenergyinsystem]

Figure1illustratesenergyflowsintoandoutofathermodynamicsystem.Forthegeneralcaseofmultiplemassflowswithuniformpropertiesinandoutofthesystem,theenergybalancecanbewritten

(5)

wheresubscriptsiandfrefertotheinitialandfinalstates,respectively.

Nearlyallimportantengineeringprocessesarecommonlymodeledassteady-flowprocesses.Steadyflowsignifiesthatallquantitiesassociatedwiththesystemdonotvarywithtime.Consequently,

(6)

whereh=u+pvasdescribedinEquation(4).

Asecondcommonapplicationistheclosedstationarysystemforwhichthefirstlawequationreducesto

(7)

SECONDLAWOFTHERMODYNAMICS

Thesecondlawofthermodynamicsdifferentiatesandquantifiesprocessesthatonlyproceedinacertaindirection(irreversible)fromthosethatarereversible.Thesecondlawmaybedescribedinseveralways.Onemethodusestheconceptofentropyflowinan

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 工作范文 > 行政公文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1