参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx

上传人:b****6 文档编号:19961860 上传时间:2023-01-12 格式:DOCX 页数:21 大小:165.03KB
下载 相关 举报
参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx_第1页
第1页 / 共21页
参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx_第2页
第2页 / 共21页
参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx_第3页
第3页 / 共21页
参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx_第4页
第4页 / 共21页
参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx

《参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx(21页珍藏版)》请在冰豆网上搜索。

参考答案模拟电子技术实验指导书概要Word文档下载推荐.docx

示波器“t/div”位置

5ms/div

0.2ms/div

20us/div

一个周期占有的格数

2div

5div

2.5div

信号周期

10ms

1ms

50us

计算所得频率(Hz)

100

1000

20000

表1-1

 

(2)幅值的测定

调节信号输出幅值分别为有效值1V、2V、2.5V(由交流毫伏表读得),频率周期为1KHz,从荧光屏上读得波形幅值,记入表1-2中。

表1-2

交流毫伏表读数

正弦波信号幅值的测定

1V

2V

2.5V

示波器“V/div”位置

0.5V/DIV

1V/DIV

峰—峰值波形格数(格)

5.6DIV

7DIV

峰值(V)

1.4V

2.8V

3.5V

计算所得的有效值(V)

四、实验注意事项

1.示波器的辉度不要过亮。

2.调节仪器旋钮时,动作不要过猛。

3.调节示波器时,要注意触发开关和电平调节旋钮的配合使用,以使显示的波形稳定。

4.作定量测定时,“t/div”和“V/div”的微调旋钮应旋置“校准”位置。

实验二晶体管单管共射放大器

一、实验目的

1.学习单管放大器静态工作点的调试和测量方法,了解静态工作点对输出电压波形的影响。

2.掌握放大器的电压放大倍数、输入电阻、输出电阻的测试方法,了解负载电阻对电压放大倍数的影响。

3.熟悉常用电子仪器的使用。

二、实验原理

对放大器的基本要求是:

有足够的电压放大倍数;

输出电压波形失真要小。

放大器工作时,晶体管应工作在放大区,如果静态工作点选择不当,或输入信号过大,都会使输出电压波形产生非线性失真。

实验电路如图2-1。

图2-1共射极单管放大器实验电路

1、电压放大倍数Av=

2、输入电阻

3、输出电阻

三、预习要求

1.熟悉实验原理电路图,了解各元件、测试点及开关的位置和作用。

2.放大器静态、动态指标的理论计算和测量方法。

3.根据电路参数估算有关待测的数据指标。

4.常用电子仪器的使用方法

四、实验内容和步骤

1.调节并测量静态工作点

接通+12V电源、调节RW,使IC=2.0mA(即UE=2.0V),用直流电压表测量三极管3个电极对地电压及用万用表测量RB2值。

记入表2-1。

表2-1IC=2.0mA

测量值

计算值

UB(V)

UE(V)

UC(V)

RB2(KΩ)

UBE(V)

UCE(V)

IC(mA)

2.86

2.17

7.23

51.6

0.69

4.37

1.98

2.测量电压放大倍数、输入电阻、输出电阻

在放大器输入端A点和地之间加入频率为1KHz的正弦信号uS,用示波器观察放大器输出电压uO波形,调节函数信号发生器的输出旋钮,在输出波形不失真的条件下用示波器测量3组US、Ui、UO数据,绘画uO和ui的波形和相位关系,记入表2-2。

表2-2Ic=2.0mA

RL(KΩ)

US(峰峰值V)

Ui(峰峰值V)

UO(峰峰值V)

Au

Ri

R0

ui波形

uO波形

0.22

0.074

1.60

21.6

5k

2.4k

2.4

0.80

10.8

0.25

0.082

1.75

21.3

2.37k

0.88

10.7

0.70

0.235

4.90

20.8

2.45

10.4

3.观察静态工作点对输出电压波形的影响

在第二步的实验电路中,由直流电压表测出UCE值,记录输出波形。

再逐步加大输入信号,使输出电压u0足够大但不失真。

然后保持适当输入信号不变,分别增大和减小RW,改变静态工作点,直到输出电压波形出现较明显的饱和或截止失真,绘出所观察到的u0波形,并测出失真情况下的IC和UCE值,记入表2-3中。

每次测IC和UCE值时都要关闭信号源。

表2-3RL=∞

失真情况

晶体管工作状态

0.73

9.45

顶部失真

工作在截止区域

2.0

4.8

正常放大

工作在放大区域

3.33

0.17

底部失真

工作在饱和区域

五、实验总结报告

1.由表2-1所测数据讨论RB2对IC及UCE的影响,取β=50,计算rbe1及Au1,并与实测Au1进行比较。

2.由表2-2所测数据讨论负载电阻对电压放大倍数的影响。

3.由步骤3观测结果,讨论静态工作点对放大器输出波形的影响。

若放大器的输出波形失真,应如何解决?

实验三差动放大器

1.加深对差动放大器性能及特点的理解

2.学习差动放大器主要性能指标的测试方法

图4-1是差动放大器的基本结构。

它由两个元件参数相同的基本共射放大电路组成。

当开关K拨向左边时,构成典型的差动放大器。

调零电位器RP用来调节T1、T2管的静态工作点,使得输入信号Ui=0时,双端输出电压Uo=0。

RE为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有加强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。

当开关K拨向右边时,构成具有恒流源的差动放大器。

它用晶体管恒流源代替发射极电阻RE,可以进一步提高差动放大器抑制共模信号的能力。

图3-1差动放大器实验电路

1.差动输入、双端输出

在图3-1中,输入信号Ui加于A、B两端,则Ui1=

Ui,Ui2=-

Ui,其差模放大倍数为

Ad=

≈-β

(1.3.1)

Ad等于单管时的放大倍数。

2.单端输入、双端输出

在图3-1中,若输入信号Ui加于A、B两端,B接地,则电路为单端输入、双端输出。

其差模放大倍数与式(1.3.1)相同。

差模电压放大倍数Ad由输出端方式决定,而与输入方式无关。

单端输出的差模放大倍数Ad1是双端输出差模放大倍数Ad的二分之一。

3.共模抑制比KCMR

在图3-1中,A、B两点相连,共模信号加到A与地之间。

若为双端输出,在理想情况下,则共模放大倍数

AC=0

实际上由于元件不可能完全对称,因此AC也不会绝对等于零。

若为单端输出,则共模放大倍数AC≈-

从式KCMR=∣

∣可知,欲使大KCMR,就要求Ad大,Ac小;

欲要Ac小,就要求RE阻值

大。

当图3-1中开关K拨向右边时,由于T3的恒流作用,等效的RE极大,显然,KCMR很大。

1.根据实验电路参数,估算典型差动放大器和具有恒流源的差大器的静态工作点及差模电压放大倍数(取β1=β2=50)。

2.测量静态工作点时,放大器输入端A、B与地应如何连接?

3.实验中怎样获得双端差模信号?

怎样获得共模信号?

画出A、B端与信号源之间的连接图。

4.怎样进行静态调零点?

用什么仪表测Uo?

四、实验内容

1.按图3-1连接实验电路,开关K拨向左边构成典型差动放大器。

1)测量静态工作点

①调节放大器零点

信号源不接入。

将放大器输入端A、B与地短接,接通±

12V直流电源,用直流电压表测量输出电压Uo,调节调零电位器RP,使Uo=0。

调节要仔细,力求准确。

②测量静态工作点

零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻RE两端电压URE,记入表3-1。

表3-1

UC1(V)

UB1(V)

UE1(V)

UC2(V)

UB2(V)

UE2(V)

URE(V)

6.75

-0.09

-0.78

6.74

-0.79

IB(mA)

0.525

0.009

7.52

2)测量差模电压放大倍数

接通±

12V直流电源,在放大器的输入端A、B之间加入频率f=1KHz的正弦信号约100mv,在输出波形无失真的情况下,用示波器测量Ui、UC1、UC2、Uo,记入表3-2中,并观察ui、uc1、uc2之间的相位关系及URE随Ui改变而变化的情况。

表3-2

典型差动放大电路

具有恒流源差动放大电路

差动输入

共模输入

Ui(V)

0.33

0.21

0.60

1.2

5.5

3.7

2.4

6.6

0.58

3

1.7

5mv

10mv

8mv

Uo(V)

7.4

13.2

50mv

Ad1=

11.2

11.4

11.0

Ad=

22.4

22.9

22.0

AC1=

0.48

0.55

0.46

0.004

0.002

AC=

0.04

0.014

3) 测量共模电压放大倍数

将放大器A、B短接,信号源接A端与地之间,构成共模输入方式,调节输入信号f=1kHz,约1V,在单端输出电压无失真的情况下,测量Ui、UC1、UC2、Uo之值记入表3-2,并观察ui、uc1、uc2之间的相位关系及URE随Ui改变而变化的情况。

2.具有恒流源的差动放大电路性能测试

将图3-1电路中开关K拨向右边,构成具有恒流源的差动放大电路。

重复内容1-2)、1-3)的要求,记入表3-2。

五、实验报告

1.整理实验数据,列表比较实验结果和理论估算值,分析误差原因。

1)静态工作点和差模电压放大倍数。

2)典型差动放大电路单端输出时的KCMR实测值与理论值比较。

3)典型差动放大电路单端输出时KCMR的实测值与具有恒流源的差动放大器KCMR实测值比较。

2.比较Ui,UC1和UC2之间的相位关系。

3.根据实验结果,总结电阻RE和恒流源的作用。

实验四/五多级放大器/负反馈放大器

加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。

负反馈在电子电路中有着非常广泛的应用。

虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。

因此,几乎所有的实用放大器都带有负反馈。

负反馈放大器有四种组态,即电压串联,电压并联,电流串联,电流并联。

本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。

1.图5-1为带有负反馈的两级阻容耦合放大电路,在电路中通过Rf把输出电压Uo引回到输入端,加在晶体管T1的发射极上。

根据反馈的判断法可知,它属于电压串联负反馈。

主要性能指标如下

1)闭环电压放大倍数Auf

Auf=

其中Au=Uo∕Ui—–基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。

1+AuFu—–反馈深度,它的大小决定了负反馈对放大器性能改善的程度。

2)反馈系数Fu=

3)输入电阻Rif=(1+AuFu)Ri′Ri′—–基本放大器的输入电阻(不包括偏置电阻)

图5-1带有电压串联负反馈的两级阻容耦合放大器

3)输出电阻Rof=

Ro—–基本放大器的输出电阻

Auo—–基本放大器RL=∞时的电压放大倍数

2、本实验还需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?

不能简单地断开反馈支路,而是要去掉反馈作用,但又要把反馈网络的影响(负载效应)考虑到基本放大器中去。

为此:

1)在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令uo=0,此时Rf相当于并联在RF1上。

2)在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时(Rf+RF1)相当于并接在输出端。

可近似认为Rf并接在输出端。

根据上述规律,就可得到所要求的如图5-2所示的基本放大器。

图5-2基本放大器

1.复习教材中有关负反馈放大器的内容。

1.按实验电路5-1估算放大器的静态工作点(β1=β2=50)。

3.怎样把负反馈放大器改接成基本放大器?

为什么要把Rf并接在输入和输入端?

4.估算基本放大器的Au,Ri和Ro;

估算负反馈放大器的Auf、Rif和Rof,并验算它们之间的关系。

5.如按深度负反馈估算,则闭环电压放大倍数Auf=?

和测量值是否一致?

为什么?

6.如输入信号存在失真,能否用负反馈来改善?

四、实验内容

1.测量状态工作点

按图5-1连接实验电路,取Vcc=+12V,Ui=0,调节Rw1,Rw2,使得UE1=UE2=2.3V。

用直流电压表分别测量第一级、第二级的静态工作点,记入表5-1。

表5-1

第一级

3.0

2.3

7.1

第二级

6.5

2.测无级间负反馈放大器的各项性能指标

将实验电路按图5-2改接,(在实验电路板上只要断开负反馈支路开关即构成基本放大器)。

(1)测量中频电压放大倍数Au,输入电阻Ri和输出电阻Ro。

①输入f=1000Hz,US约5mv正弦信号输入放大器,用示波器监视输出波形Uo,在Uo不失真的情况下,用用示波器测量US、Ui、UL、Uo,记入表5-2。

表5-2

US(mV)峰峰值

Ui(mV)峰峰值

UL(V)峰峰值

Uo(V)峰峰值

Ri(KΩ)

Ro(KΩ)

无反馈放大器

32

10

4.2

7.0

700

4.5

1.6

20

7

2.8

4.9

5.0

1.8

8

1.16

2.0

714

5.3

负反馈放大器

150

80

5.2

6

75

0.36

110

60

4.0

4.4

73.3

12.0

0.24

30

2.1

76

10.0

0.23

无反馈放大器平均Ri=4.9kRo=1.7k;

Au=704.7

反馈放大器平均Ri=11.1kRo=0.27k;

Au=74.8

(2)测量通频带

接上RL,保持

(1)中的US不变,然后增加和减小输入信号的频率,使输出电压为中频(即1000Hz时)的输出电压的0.707倍,得出上、下限频率fH和fL,记入表5-3。

表5-3

fL(Hz)

fH(KHz)

△f(KHz)

350

22

1840

3.测试负反馈放大器的各项性能指标

将实验电路恢复为图5-1的负反馈放大电路。

适当加大US(约10mV),在输出波形不失真的条件下,测量负反馈放大器的Auf、Rif和Rof,记入表5-2;

测量fHf和fLf,记入表5-3。

四、实验报告

1.将基本放大器和负反馈放大器动态参数的实测值和理论估算值列表进行比较。

2.根据实验结果,总结电压串联负反馈对放大器性能的影响。

实验六集成运算放大器的基本应用

——模拟运算电路

1.研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部进入不

图6-1

同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路

1)反相比例运算电路

电路如图6-1所示。

对于理想运放,该电路的输出电压与输入电压之间的关系为

Uo=-

Ui

为了减小输入级偏置电流引起的运算误差,接入平衡电阻R`=R1∥Rf。

2)同相比例运算电路

图6-2是同相比例运算电路,它的输出电压与输入电压之间的关系为Uo=(1+

)Ui

R’=R1∥Rf

图6-2

图6-2

3)反相加法电路

电路如图6-3所示,输出电压与输入电压之间的关系为

Uo=-(

Ua+

Ub)R`=R1∥R2∥Rf

4)差动放大电路(减法器)

对于图6-4所示的减法运算电路,当R1=R2,R3=Rf时,有如下关系式

Uo=

(Ub-Ua)

图6-3图6-4

1.复习集成运放线性应用部分内容,并根据实验电路参数计算各电路输出电压的理论值。

2.在反相加法器中,如Ui1和Ui2均采用直流信号,并选定Ui2=﹣1V,当考虑到运算放大器的最大输出幅度(±

12V)时,∣Ui1∣的大小不应超过多少伏?

3.为了不损坏集成块,实验中应注意什么问题?

五、实验内容

实验前要看清运放组件各管脚的位置;

切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

1.反相比例运算电路

按图6-1连接实验电路,接通±

12V电源。

在反相端加直流信号Ui,测出表6-1中所指定的各电压,计算放大倍数。

表6-1

0.2V

0.4V

0.7V

-0.3V

-0.5V

Uo实测值

-2.07

-4.1

-7.1

3.08

5.1

Af

-10.4

-10.3

-10.1

-10.2

Uo计算值

-2

-4

-7

5

2.同相比例运算电路

按图6-2连接实验电路。

实验步骤同上,将结果记入表6-2.

表6-2

2.2

7.7

-3.3

-5.5

11

3.反相加法运算电路

按图6-3连接实验电路。

实验步骤同上,将结果记入表6-3

表6-3

Ua

Ub

0.3V

-0.8V

-0.1V

0.8V

-5

4

4.减法运算电路

按图6-4连接实验电路。

实验步骤同上,将结果记入表6-4

表6-4

-0.2V

-8

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1