《铝用炭素工艺及设备》Word文件下载.docx

上传人:b****5 文档编号:19881263 上传时间:2023-01-11 格式:DOCX 页数:24 大小:81.08KB
下载 相关 举报
《铝用炭素工艺及设备》Word文件下载.docx_第1页
第1页 / 共24页
《铝用炭素工艺及设备》Word文件下载.docx_第2页
第2页 / 共24页
《铝用炭素工艺及设备》Word文件下载.docx_第3页
第3页 / 共24页
《铝用炭素工艺及设备》Word文件下载.docx_第4页
第4页 / 共24页
《铝用炭素工艺及设备》Word文件下载.docx_第5页
第5页 / 共24页
点击查看更多>>
下载资源
资源描述

《铝用炭素工艺及设备》Word文件下载.docx

《《铝用炭素工艺及设备》Word文件下载.docx》由会员分享,可在线阅读,更多相关《《铝用炭素工艺及设备》Word文件下载.docx(24页珍藏版)》请在冰豆网上搜索。

《铝用炭素工艺及设备》Word文件下载.docx

项目

单位

指标范围

备注

体积密度

电阻率

抗压强度

抗弯强度

热膨胀系数

导热系数

透气率

CO2反应余量

空气反应余量

杂质:

S

V

Si

Fe

Na

结构

g/cm3

Ωmm2/m

Mpa

10-6/K

W/mK

Npm

%RDC

%

ppm

\

1.53-1.58

52-60

40-48

5-12

3.5-4.0

3.5-4.5

0.5-1.5

84-92

70-85

1.2-2.4

80-350

100-300

100-500

250-600

越高越好

尽量控制低的电阻率

越低越好

剩余越多越好

没有掉块和裂纹

表2我国现行的电解铝用(预焙)炭阳极性能指标

牌号

灰分(%)

(Ω·

mm2/m)

I抗压强度

≥(N/mm2)

(g/cm3)

真比重

TY-1

0.5

55

29

1.5

2.0

TY-2

1.2

63

第二章铝用炭素阳极的分类

铝用炭素阳极材料可分为阳极糊和预焙阳极炭块两大类。

阳极糊未经焙烧,直接用在自焙铝电解槽上作阳极;

阳极炭块已经成型和焙烧,,用于预焙铝电解槽作阳极。

阳极材料分类如图1-11所示

上插阳极糊普通阳极糊

阳极糊干阳极糊

炼铝用炭阳极材料侧插阳极糊添加剂阳极糊

预焙阳极炭快

图1-11阳极材料分类

以阳极糊为主体所构成的连续自焙阳极可以连续工作而不必更换,其利用电解槽热量焙烧阳极,节省能量,不需建压型、焙烧设备、节省投资。

但由于沥青烟直接在电解槽上部散发,环境污染严重,给铝电解生产烟气净化和自动化操作带来困难,此外自焙阳极横截面积的局限限制了电解槽容量的提高,阳极操作比预焙阳极复杂,阳极电阻率较高,电耗较大。

以阳极炭块为本体构成的预备阳极操作比较简单,阳极电压降比自焙阳极低,易于实现机械化、自动化,且消除了电解过程中的沥青烟害,有利于电解槽向大容量方向发展。

但是,制造阳极炭块需经过成型、焙烧工序,工艺流程长,成本高,投资也远大于阳极糊生产的投资。

第一节自焙阳极

一、自焙阳极的特点

自焙阳极是利用铝电解槽自身热量焙烧阳极,使阳极糊中沥青热解焦化并与骨料形成致密的固体炭阳极体。

(自焙阳极结构简图)

自焙阳极的优点:

1)阳极能够连续工作而不需要更换;

2)还可以利用电解槽热量焙烧阳极制造阳极无需压型和焙烧设备等(减少投资)。

自焙阳极的缺点:

1)烟害污染严重;

2)阳极的中心部位温度高,散热不好,电流分布受到限制,阳极欧姆电压降高;

3)自动化程度低,不适合大规模生产。

(20世纪80年代之后,国内外新建大型铝厂多已不采用此种槽型。

二、规格与性能要求

阳极糊的分类

根据铝电解槽阳极棒的插人部位的不同,阳极糊分为侧插阳极糊与上插阳极糊。

侧插阳极糊→侧插自焙铝电解槽;

上插阳极糊→上插自焙铝电解槽。

(我国大多数自焙电解使用侧插阳极糊。

理化指标

上插阳极糊的理化性能指标与侧插阳极糊相近,但粒度组成和沥青含量都不同,比较如下:

干料的组成普通上插阳极糊普通侧插阳极糊

6-4mm(6±

2)%<

2%

4--2mm(17±

2)%(20±

4)%

2--1mm(13±

2)%(15±

3)%

1—0.5mm余量余量

~100目(51±

2)%(48±

2)%

其中-200目(38±

2)%(38±

沥青占糊料量(31~33)%(28~30)%

质量标准

表阳极糊的质量标准(GB8741—88)

牌号灰分/%电阻率/μΩ·

m耐压强度/MPa真密度/g·

cm-3体积密度/g·

cm-3

THY-1≦0.45≦75≧28≧1.98≧1.38

THY-2≦0.60≦80≧27≧1.98≧1.36

THY-3≦1.00≦80≧27≧1.98≧1.36

第二节预焙阳极

一、概念

铝电解预焙阳极由预先焙制的多个阳极炭块组组成。

每个阳极炭块组由2-4阳极炭块及导杆、钢爪等组成。

预焙阳极多为间断式。

每组阳极可使用18—28天(换极周期)。

当阳极炭块被电解反应消耗为原有高度的25%左右时,为了避免钢爪熔化,就必须将旧的一组阳极炭块吊出,用新的炭块组替换。

取出的炭块称为“残极”。

预焙阳极的操作主要有吊出殘极,清理殘极,新炭块组组装,安装新炭块组等。

由于预焙阳极操作简单,没有沥青烟害,易于实现机械化、自动化,可使电解槽大型化,和获得高效益,因此国内外新建大型铝厂多采用此种阳极。

根据使用的槽型(电流范围、生产规模)等确定阳极的规格(列表说明几种主要槽型对应的阳极规格),列表说明预焙阳极的主要性能指标。

第三章铝用炭素阳极的制备技术

本章要求:

1、掌握铝用炭素阳极的主要原料来源及其评价指标;

2、掌握阳极制备的主体工艺流程;

3、掌握阳极制备过程的主要工艺技术条件;

4、掌握阳极制备主体设备的工作原理。

对于自焙阳极和预焙阳极,他们的制备技术基本一致,所不同的是预焙阳极的制备流程比自焙阳极要长,增加了阳极成型、焙烧和组装工序。

下面就预焙阳极生产工艺及设备进行阐述。

第一节原料

铝电解预焙炭素阳极的生产原料包括阳极主体组分(又称骨料)和粘接剂两大部分。

一、骨料

1)种类:

石油焦。

国内炭素厂普遍采用延迟石油焦(简称延迟焦)。

2)来源:

炼油厂的炼油渣经过高温加热,采用延迟焦化工艺所得到的产品。

(焦化工艺分延迟焦化和流化床焦化,延迟焦化生产的焦因其孔隙度高而特别适用于制备铝电解用炭素阳极)

3)质量评价指标:

一般用灰分、硫分、挥发分和1300℃煅烧后的真密度(真比重)来衡量,具体指标见表3。

表3我国延迟石油焦的质量标准

一号

二号

三号

A级

B级

水分

(不大于)

3.0

灰分

0.3

0.8

硫分

1.0

挥发分

10

12

15

16

18

二、粘接剂

沥青。

电解用炭素阳极一般用煤沥青做粘接剂。

是由钢铁工业烟煤制取焦炭时产出的煤焦油经高温分馏后的残渣,是多种碳氢化合物的混合体。

3)作用:

粘接固体炭粒(骨料),构成具有一定塑性的炭糊,并且在炭糊焦化过程中渗入骨料之间,使阳极具有足够的机械强度。

4)性能指标:

包括固定碳、挥发分和灰分等。

(固定碳的定义:

沥青在隔绝空气的条件下,加热到800℃,干馏3小时,排除全部挥发分后残留的总碳量,也称结焦残碳值)

沥青的主要性能指标见表4。

表4预焙阳极粘接剂沥青的性能指标

类别

中温沥青

高温沥青

软化点(℃)

挥发分(%)

结焦残碳值(%)

甲苯不溶物(%)

75-95

65-75

52-55

17-25

95-120

47-49

65-68

44-48

第二节预焙阳极的制备工艺及设备

目前炭素厂主要生产工艺流程如图。

一、原料的准备和煅烧

(一)原料的准备

包括内容:

原料的验收入库和煅烧前的准备。

进厂石油焦首先通过带网格的受料漏斗进行筛选,其中小于300mm的料进粗碎设备进行破碎,而大于300mm的料需经人工打碎后再进漏斗过筛。

粗碎设备:

主要有齿式对辊破碎机或颚式破碎机。

其技术要求是:

石油焦破碎完毕后粒度控制在50-70mm。

进厂的沥青经破碎后送入沥青熔化槽进行熔化,使其成为液体沥青。

一般破碎沥青的设备多为环锤式破碎机。

(二)石油焦煅烧

1、煅烧的目的:

1)、排除原料中的水分和挥发分;

2)、促使单体硫气化和化合态硫的分解;

煅烧的结果:

提高原料的真密度、机械强度、导电性和抗氧化能力。

2、煅烧的主要技术参数

控制煅烧带温度不低于1250℃,不高于1350℃。

3、煅烧设备(找设备图)

煅烧设备主要有回转窑、罐式煅烧炉、电热煅烧炉等三种,目前,大多数炭素厂采用回转窑,在此重点介绍回转窑。

1)回转窑的优缺点:

优点:

结构简单,产能大,生产机械化程度高,投资相对少,容易清扫。

缺点:

原料的烧损比较大(一般有10%左右)。

2)回转窑的结构

主体:

回转窑和冷却机组成

回转窑:

窑尾装置、窑体、窑头装置、燃烧装置、二次风装置、引风机、除尘设施及排烟管路、烟囱等。

冷却机:

结构类似于回转窑窑体,但简单许多,其作用是:

一方面冷却物料,另一方面也可空气,节省热能。

3)物料煅烧程序及工艺参数

原料石油焦(俗称生焦)经窑尾流入回转窑,在窑内与逆流的热空气接触加热,由于窑体是倾斜转动,物料随窑体转动的同时向窑头移动,并依次经过窑内的预热带、煅烧带、冷却带,最后从窑头流出进入冷却机。

预热带:

最高温度:

800-1100℃,进料口温度:

500-600℃。

热源:

从煅烧带流过的热烟气。

物料变化:

脱水并排出挥发分及硫分。

煅烧带:

1250-1350℃,物料可加热到1200℃以上。

重油或煤气燃烧,二次风助燃。

生焦焦化,石油焦形成碳原子的平面网格,呈两维空间的有序结构排列,达到增加石油焦的物化性能(如电阻率、真密度、机械强度等)的目的。

冷却带:

窑头温度:

小于1000℃。

物料在此段自然冷却。

采用喷水方式对物料进行强制冷却。

冷却机出口煅后焦温度:

小于60℃。

二、筛分与配料

包括工序:

破碎、筛分、球磨、配料。

(一)破碎

1、目的:

将煅后焦进一步破碎(破碎粒径小于12mm),使其满足配料的要求。

2、设备:

鼠笼式破碎机

(二)筛分

将破碎后的煅后焦分成不同粒级,以符合科学配料的要求。

2、筛分设备:

一般在炭素厂多使用震动筛,此外还有回转筛、摇摆筛等。

(三)球磨

将部分煅后焦磨成细粉,以满足配料要求。

球磨机

3、工作原理:

采用某种介质(如钢球),在筒体内与物料一起旋转,介质在运动中将物料磨碎。

(四)配料

1、定义:

将不同粒级的焦粒(包括粉料)按一定的比例配合。

2、目的:

为了得到堆积密度较大而气孔率较小的炭素材料。

3、配料技术参数

对于预焙阳极,其生产中的基本配方为:

粗颗粒料(6-12mm):

14-20%;

中颗粒料(3-6mm):

8-10%;

细颗粒料(-3mm):

45-54%;

粉料:

(-0。

074mm):

22-25%;

残极:

1-30%;

生碎:

0-7%;

粘接剂沥青:

14-17%

4、配料设备:

料仓和电子秤。

三、成型

预热、混捏、成型

(一)预热

将各种粒级的骨料混合均匀并加热,为混捏工序打基础。

2、技术参数:

要求骨料从预热螺旋出口的温度要达到140-160℃。

(二)混捏

将各种粒级的骨料与粘结剂在一定温度下搅拌、混合,从而获得塑性糊料。

1)物料混合均匀;

2)不同颗粒达到合理堆积,提高密实度;

3)粘接剂渗透到各种骨料的空隙中,提高了物料的粘接性和密实度。

3、混捏设备

双(单)轴搅拌混捏锅:

是间歇生产方式,比较适合于规模不大的炭素厂。

双轴搅拌连续式混捏机:

是连续生产方式,适合于规模较大的炭素厂。

目前混捏设备的加热方式(热源)主要是蒸汽、触媒或电热。

4、主要技术参数

该工艺的主要技术参数是混捏温度和混捏时间。

混捏温度应该选定比沥青的软化点高出50-80℃。

铝用预焙炭素阳极一般选用高温改质沥青做粘接剂,其软化点为110℃左右,则混捏温度应该选择160-180℃,且必须达到要求。

因为温度高,沥青粘度小,流动性好,浸润效果好,同时容易渗透到空隙中去;

反之,温度不够,沥青粘度大,混捏时搅刀转动费力,粘接剂与骨料难以混合均匀,影响阳极的物理性能。

当然,温度也不能过高,因为温度太高,沥青受热开始变化,部分轻质组分逐渐挥发,还有部分组分手空气中氧的作用,发生缩聚反应,使糊料的塑性变差,导致挤压成型的成品率降低。

粘接剂沥青是在加入混捏机前,必须先经过预热,且温度高于混捏机内的物料温度,一般要求大于170℃。

至于混捏时间,一般在40-60分钟范围内,但要视具体情况而定。

在实际生产中可遵循如下规则:

1)沥青软化点稳定,混捏机温度稳定,混捏配料用量符合工艺要求,混捏时间不应延长或缩短;

2)沥青软化点变化时,依沥青粘接剂的软化点高低适当改变混捏时间;

3)混捏温度低时,可适当延长混捏时间,反之,则可适当缩短。

4)混捏细粉料时,可适当延长混捏时间;

5)加入生碎料时,也要适当延长混捏时间;

6)混捏过程因故停机,应保温并延长混捏时间;

7)若有特殊添加剂的加入,改变一般常规产品的混捏制度,也要考虑混捏时间的变化。

(三)成型

成型是将混捏好的炭素糊料用加压设备压制成具有一定形状和具有较高密度的半成品(生块)。

2、成型设备

在炭素材料生产中常用的成型方法有挤压法和模压法,还有振动成型法、等静压成型法和捣固法。

铝用炭素阳极的成型方法多用振动成型法,使用的设备为振动成型机。

3、成型原理

利用高速振动(每分钟达2000-3000次,振幅为1-3mm)的振动机组,使装在成型模内的糊料处于强烈的振动状态,使炭糊获得相当大的触变速度和加速度,在颗粒间的接触边界产生应力,引起颗粒的相对位移,使糊料内部空隙不断降低,整体密度逐渐提高,达到成型的目的。

4、成型工艺及技术参数

每一块炭素阳极的成型生产周期包括固定成型模、加料、振动、脱模等操作过程。

在生产中常采用一边加料,一边振动的操作方法,当料加到一定的高度即压上重锤,同时继续振动,振动时间视阳极规格的大小而不同。

如用于160KA预焙槽的阳极炭块振动成型时间为1分钟左右。

振动时间结束即脱模,阳极生块制备完毕。

四、生块焙烧

(一)焙烧工艺的作用

焙烧是影响炭素制品物理化学性能很大的一道关键工序。

它是将压型后的炭块在隔离空气的条件下进行热处理,使粘接剂转变为焦炭。

由于生块中的沥青牢固地包裹在炭素颗粒之间的过度层,当高温转化为焦碳后,就在半成品中构成界面炭网格层,具有搭桥、加固的作用。

经过焙烧的炭素阳极其机械强度稳定,并能显著提高其导热性、导电性和耐高温性。

焙烧过程是一个复杂的过程,伴随着许多化学变化,影响焙烧工艺的关键技术参数是焙烧温度。

(二)焙烧过程中的物理化学变化

一般情况下,在焙烧过程中,预焙阳极受热将发生一系列的变化。

该变化大致分为四个阶段:

第一阶段:

当阳极加热到200~250℃时,由于粘接剂沥青开始软化,导致阳极坯体变软,体积增大,但质量并不减少;

第二阶段:

随着焙烧温度的继续增加,粘接剂沥青中的易挥发组分挥发逸出。

在温度400℃左右,沥青的粘结能力降低;

第三阶段:

在500-600℃时,阳极开始硬化,同时体积收缩,导电性与机械强度增加;

第四阶段:

焙烧温度超过600℃,挥发分已基本排出,再继续加热,阳极本身的化学变化逐渐停止,外部与内部收缩微弱。

但阳极的真密度、气孔率以及强度、硬度和导电性继续增加,阳极颜色由黑色变为灰色。

(三)焙烧工艺及设备

1、焙烧曲线

阳极炭块的焙烧过程是通过一个从升温到降温的温度制度的实行而完成的。

因此,在焙烧工序开始前必须制定一个合理的焙烧曲线。

确定焙烧曲线的依据:

A、焙烧炉型;

B焙烧产品的规格;

C焙烧操作水平。

2、焙烧工艺

焙烧工艺因炉型不同而有所区别,但基本工序包括:

装炉、点火升温、保温、冷却、出炉、清砂、检测。

上述工序都不难理解,只是对清砂工序稍作解释。

在炭素阳极被焙烧的过程中,因粘接剂沥青的软化,有可能使炭素阳极变形,因此,在生块入炉时,在其周围缝隙中填满一些细颗粒的炭素填充料(称其为焙砂)来支撑阳极,同时,填充料还可以阻止炭块与空气接触,以免在高温焙烧过程中被空气氧化。

在阳极焙烧完毕出炉时,阳极表面会附着一些填充料颗粒,须对其进行清除才能成为最终的焙烧熟块。

3、焙烧设备

铝用炭素阳极的焙烧设施有隧道窑、导焰窑和多室环式焙烧炉(也称为轮窑)等,对于当前规模化、集团化生产的企业,采用多室环式焙烧炉比较合算。

1)多室环式焙烧炉的工作特点

多室环式焙烧炉分封闭式(带活动炉盖)和敞开式(不带炉盖)两种。

多室环式焙烧炉属于连续作业炉,而就每个单体炉室而言是周期性的循环作业炉。

多室环式焙烧炉的优点是:

焙烧产品质量较好,热效率比导焰窑高,装出炉机械化程度高,从整炉来看,生产连续性强,产量高。

多室环式焙烧炉的缺点是:

基建投资大,厂房结构要求高,不适合小规模生产。

多室环式焙烧炉的炉室数有:

18室、20室、30室、32室等几种规格。

例如:

广西平果铝业公司炭素厂使用的是18室环式焙烧炉,其中预热焙烧5室,冷却8室,装炉、出炉各1室,密封2室和检修1室。

焙烧炉使用的燃料有煤气和重油。

2)多室环式焙烧炉的工作原理

多室环式焙烧炉从整体上可划分为三个带:

预热带、焙烧带和冷却带。

如图所示,以32室环式焙烧炉为例,它是由32个单独的炉室彼此串联组成,需要焙烧的炭素阳极装入炉室内,用烟气间接加热,为了使烟气能从一个炉室进入到另一个炉室,在相连的炉室之间设有连接烟道,烟气通过烟道的顺序可以用闸门来控制。

图中的的32个炉室按两排平均布置,每排16个,燃烧系统也分为两组。

在第一个系统中燃料由燃烧装置引入9#和10#炉室,并在此与空气混合后燃烧。

9#和10#达到最高温度(这样的炉室称为火室)。

燃烧的产物并不立即排入烟囱,而是依次通过一系列炉室,即图中11#至16#炉室,预热装入这些炉室的制品后,以较低的废气温度排出,燃烧气体所经过的炉室数量,应该使排出的废气温度降到100-150℃。

燃烧所需的空气,应经过装有焙烧制品的各炉室如图中的5#至8#进行预热,这些炉室刚刚经过高温阶段,其中制品温度接近1000℃,经过这些炉室的空气既冷却了制品,有达到了预热的效果,使得它们在进入“火室”前已被加热到700-800℃,经过冷却后的制品温度应低于制品的氧化温度,就可以出炉,即4#、3#炉室为空炉室,可以进行维护检修,1#、2#炉室为装料炉室。

在9#炉室焙烧结束后,将燃烧架向前移动一个炉室,即10#与11#炉室进入“火室”,焙烧系统相应向前移动一个炉室,5#炉室充分冷却后,又可以与焙烧系统切断,进入出料阶段。

此时相应的排气烟道也应向前移一炉室再通向烟囱。

如此依次按闭路循环,连续向前推进。

同样的操作也在第二个燃烧系统中完成。

从以上操

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 工作计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1