油脂如何在轴承内发挥效用Word格式.docx

上传人:b****6 文档编号:19823296 上传时间:2023-01-10 格式:DOCX 页数:49 大小:55.08KB
下载 相关 举报
油脂如何在轴承内发挥效用Word格式.docx_第1页
第1页 / 共49页
油脂如何在轴承内发挥效用Word格式.docx_第2页
第2页 / 共49页
油脂如何在轴承内发挥效用Word格式.docx_第3页
第3页 / 共49页
油脂如何在轴承内发挥效用Word格式.docx_第4页
第4页 / 共49页
油脂如何在轴承内发挥效用Word格式.docx_第5页
第5页 / 共49页
点击查看更多>>
下载资源
资源描述

油脂如何在轴承内发挥效用Word格式.docx

《油脂如何在轴承内发挥效用Word格式.docx》由会员分享,可在线阅读,更多相关《油脂如何在轴承内发挥效用Word格式.docx(49页珍藏版)》请在冰豆网上搜索。

油脂如何在轴承内发挥效用Word格式.docx

持续的磨损将引起轴承零件逐渐损坏,并最终导致轴承尺寸精度丧失及其它相关问题。

磨损可能影响到形状变化,配合间隙增大及工作表面形貌变化,可能影响到润滑剂或使其污染达到一定程度而造成润滑功能完全丧失,因而使轴承丧失旋转精度乃至不能正常运转。

磨损失效是各类轴承常见的失效模式之一,按磨损形式通常可分为最常见的磨粒磨损和粘着磨损。

磨粒磨损系指轴承工作表面之间挤入外来坚硬粒子或硬质异物或金属表面的磨屑且接触表面相对移动而引起的磨损,常在轴承工作表面造成犁沟状的擦伤。

硬质粒子或异物可能来自主机内部或来自主机系统其它相邻零件由润滑介质送进轴承内部。

粘着磨损系指由于摩擦表面的显微凸起或异物使摩擦面受力不均,在润滑条件严重恶化时,因局部摩擦生热,易造成摩擦面局部变形和摩擦显微焊合现象,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂而增大塑性变形。

这种粘着——撕裂——粘着的 

循环过程构成了粘着磨损,一般而言,轻微的粘着磨损称为擦伤,严重的粘着磨损称为咬合。

3.断裂失效 

轴承断裂失效主要原因是缺陷与过载两大因素。

当外加载荷超过材料强度极限而造成零件断裂称为过载断裂。

过载原因主要是主机突发故障或安装不当。

轴承零件的微裂纹、缩孔、气泡、大块外来杂物、过热组织及局部烧伤等缺陷在冲击过载或剧烈振动时也会在缺陷处引起断裂,称为缺陷断裂。

应当指出,轴承在制造过程中,对原材料的入厂复验、锻造和热处理质量控制、加工过程控制中可通过仪器正确分析上述缺陷是否存在,今后仍必须加强控制。

但一般来说,通常出现的轴承断裂失效大多数为过载失效。

4.游隙变化失效 

轴承在工作中,由于外界或内在因素的影响,使原有配合间隙改变,精度降低,乃至造成“咬死”称为游隙变化失效。

外界因素如过盈量过大,安装不到位,温升引起的膨胀量、瞬时过载等,内在因素如残余奥氏体和残余应力处于不稳定状态等均是造成游隙变化失效的主要原因

滚动轴承标志规范

本标准适用于各类轴承的标志。

.标志方法

2.1 

机械法

2.2 

电蚀法

2.3 

化学法:

本法仅适用于少量的试制品;

补写游隙组别代号和精度等级代号;

以及对多联轴承的有关补充代号和标志等。

.标志内容和位置

一般在套圈端面上,应标上轴承代号、制造年代号和制造厂代号(或商标),三者间隔120度均匀分布,为美观亦可匀称分布。

但也可按照产品图纸要求标在护罩、保持架、挡圈、密封或防尘装置的端面上;

制造年分代号应符合制造厂产品设计部门的规定;

套圈端面有效宽度小于0.8mm的,其标志允许标在外径上和包装物上。

3.1 

对于不可分离型轴承,允许在一个套圈端面上,标上完整的标志。

为区别另一套圈的基准面,允许在该套圈的非基准面上标工艺标志。

3.2 

对分离型轴承,必须在每个套圈端面上,标上完整的标志,但亦允许在其中一个套圈的端面上,间隔180度标上轴承代号和制造厂代号(或商标)。

3.3 

几个型号的轴承利用同一套圈时,可在该套圈端面上,标上这些轴承的代号,或者用化学法补上。

4. 

标志字体和字高

字体应符合制造厂产品设计部门的规定。

字高按下列高度选取:

0.5,0.7,1,1.2,1.5,2,2.5,3,4,5mm

必要时,可按照产品图纸的规定,同一轴承的各零件可采用不同大小的字体,其高度应尽可能选用相互邻近的二个规格。

.标志要求

5.1 

标志必须齐全、完整。

5.2 

字迹必须端下、清晰;

线条应粗细均匀。

字迹应有一定深度。

对电蚀法:

字高小于或等于1mm,其字深不得小于0.003mm;

字高大于1mm但小于或等于2.5mm,其字深不得小于0.005mm;

字高大于2.5mm,其字深不得小于0.01mm。

5.3 

标志中心圆直径、等分和字体等不得有目测可见的偏移。

5.4 

标志字体、符号形状、字宽、线条宽度和字间距离应符合制造厂产品设计部门的规定。

5.5 

轴承零件表面除图纸和有关文件所允许的标志外,不得有其他标志。

5.6 

订户有特殊要求时,可与制造厂协商,按协商的补充技术要求采用所需标志方法和标志内容。

影响轴承寿命的因素及其控制

1.影响轴承寿命的材料因素

滚动轴承的早期失效形式,主要有破裂、塑性变形、磨损、腐蚀和疲劳,在正常条件下主要是接触疲劳。

轴承零件的失效除了服役条件之外,主要受钢的硬度、强度、韧性、耐磨性、抗蚀性和内应力状态制约。

影响这些性能和状态的主要内在因素有如下几项。

1.1淬火钢中的马氏体

高碳铬钢原始组织为粒状珠光体时,在淬火低温回火状态下,淬火马氏体含碳量,明显影响钢的力学性能。

强度、韧性在0.5%左右,接触疲劳寿命在0.55%左右,抗压溃能力在0.42%左右,当GCr15钢淬火马氏体含碳量为0.5%~0.56%时,可以获得抗失效能力最强的综合力学性能。

应该指出,在这种情况下获得的马氏体是隐晶马氏体,测得的含碳量是平均含碳量。

实际上,马氏体中的含碳量在微区内是不均匀的,靠近碳化物周围的碳浓度高于远离碳化物原铁素体部分,因而它们开始发生马氏体转变的温度不同,从而抑制了马氏体晶粒的长大和显微形态的显示而成为隐晶马氏体。

它可避免高碳钢淬火时易出现的显微裂纹,而且其亚结构为强度与韧性均高的位错型板条状马氏体。

因此,只有当高碳钢淬火时获得中碳隐晶马氏体时轴承零件才可能获得抗失效能力最佳的基体。

1.2淬火钢中的残留奥氏体

高碳铬钢经正常淬火后,可含有8%~20%Ar(残留奥氏体)。

轴承零件中的Ar有利也有弊,为了兴利除弊,Ar含量应适当。

由于Ar量主要与淬火加热奥氏体化条件有关,它的多少又会影响淬火马氏体的含碳量和未溶碳化物的数量,较难正确反映Ar量对力学性能的影响。

为此,固定奥氏条件,利用奥氏体体化热稳定化处理工艺,以获得不同Ar量,在此研究了淬火低温回火后Ar含量对GCr15钢硬度和接触疲劳寿命的影响。

随着奥氏体含量的增多,硬度和接触疲劳寿命均随之而增加,达到峰值后又随之而降低,但其峰值的Ar含量不同,硬度峰值出现在17%Ar左右,而接触疲劳寿命峰值出现在9%左右。

当试验载荷减小时,因Ar量增多对接触疲劳寿命的影响减小。

这是由于当Ar量不多时对强度降低的影响不大,而增韧的作用则比较明显。

原因是载荷较小时,Ar发生少量变形,既消减了应力峰,又使已变形的Ar加工强化和发生应力应变诱发马氏体相变而强化。

但如载荷大时,Ar较大的塑性变形与基体会局部产生应力集中而破裂,从而使寿命降低。

应该指出,Ar的有利作用必须是在Ar稳定状态之下,如果自发转变为马氏体,将使钢的韧性急剧降低而脆化。

1.3淬火钢中的未溶碳化物

淬火钢中未溶碳化物的数量、形貌、大小、分布,既受到钢的化学成分和淬火前原始组织的影响,又受奥氏体化条件的影响,有关未溶碳化物对轴承寿命的影响研究较少。

碳化物是硬脆相,除了对耐磨性有利之外,承载时因会(特别是碳化物呈非球形)与基体引起应力集中而产生裂纹,从而会降低韧性和疲劳抗力。

淬火未溶碳化物除了自身对钢的性能产生影响之外,还影响淬火马氏体的含碳量和Ar含量及分布,从而对钢的性能产生附加影响。

为了揭示未溶碳化物对性能的影响,采用不同含碳量的钢,淬火后使其马氏体含碳量和Ar含量相同而未溶碳化物含量不同的状态,经150℃回火后,由于马氏体含碳量相同,而且硬度较高,因而未溶碳化物少量增高对硬度增高值不大,反映强度和韧性的压溃载荷则有所降低,对应力集中敏感的接触疲劳寿命则明显降低。

因此淬火未溶碳化物过多对钢的综合力学性能和失效抗力是有害的。

适当降低轴承钢的含碳量是提高制件使用寿命的途径之一。

淬火未溶碳化物除了数量对材料性能有影响之外,尺寸、形貌、分布也对材料性能产生影响。

为了避免轴承钢中未溶碳化物的危害,要求未溶碳化物少(数量少)、小(尺寸小)、匀(大小彼此相差很小,而且分布均匀)、圆(每粒碳化物皆呈球形)。

应该指出,轴承钢淬火后有少量未溶碳化物是必要的,不仅可以保持足够的耐磨性,而且也是获得细晶粒隐晶马氏体的必备条件。

1.4淬火回火后的残留应力

轴承零件经淬火低温回火后,仍具有较大的内应力。

零件中的残留内应力有利和弊两种状态。

钢件热处理后,随着表面残留压应力的增大,钢的疲劳强度随之增高,反之表面残留内应力为拉应力时,则使钢的疲劳强度降低。

这是由于零件的疲劳失效出现在承受过大拉应力的时候,当表面有较大压应力残存时,会抵消同等数值的拉应力,而使钢的实际承受拉应力数值减小,使疲劳强度极限值增高,当表面有较大拉应力残存时,会与承受的拉应力载荷叠加而使钢的实际承受的拉应力明显增大,即使疲劳强度极限值降低。

因此,使轴承零件淬火回火后表面残留较大的压应力,也是提高使用寿命的措施之一(当然过大的残留应力可能引起零件的变形甚至开裂,应给予足够重视)。

1.5钢的杂质含量

钢中的杂质包括非金属夹杂物和有害元素(酸溶)含量,它们对钢性能的危害往往是相互助长的,如氧含量越高,氧化物夹杂物就越多。

钢中杂质对力学性能和制件抗失效能力的影响与杂质的类型、性质、数量、大小及形状有关,但通常都有降低韧性、塑性和疲劳寿命的作用。

随着夹杂物尺寸的增大,疲劳强度随之而降低,而且钢的抗拉强度越高,降低趋势加大。

钢中含氧量增高(氧化物夹杂增多),弯曲疲劳和接触疲劳寿命在高应力作用下也随之降低。

因此,对于在高应力下工作的轴承零件,降低制造用钢的含氧量是必要的。

一些研究表明,钢中的MnS夹杂物,因形状呈椭球状,而且能够包裹危害较大的氧化物夹杂,故其对疲劳寿命降低影响较小甚至还可能有益,故可从宽控制。

影响轴承寿命的材料因素的控制

为了使上述影响轴承寿命的材料因素处于最佳状态,首先需要控制淬火前钢的原始组织,可以采取的技术措施有:

高温(1050℃)奥氏体化速冷至630℃等温正火获得伪共析细珠光体组织,或者冷至420℃等温处理,获得贝氏体组织。

也可采用锻轧余热快速退火,获得细粒状珠光体组织,以保证钢中的碳化物细小和均匀分布。

这种状态的原始组织在淬火加热奥氏体化时,除了溶入奥氏体中的碳化物外,未溶碳化物将聚集成细粒状。

当钢中的原始组织一定时,淬火马氏体的含碳量(即淬火加热后的奥氏体含碳量)、残留奥氏体量和未溶碳化物量主要取决于淬火加热温度和保持时间,随着淬火加热温度增高(时间一定),钢中未溶碳化物数量减少(淬火马氏体含碳量增高)、残留奥氏体数量增多,硬度则先随着淬火温度的增高而增加,达到峰值后又随着温度的升高而降低。

当淬火加热温度一定时,随着奥氏体化时间的延长,未溶碳化物的数量减少,残留奥氏体数量增多,硬度增高,时间较长时,这种趋势减缓。

当原始组织中碳化物细小时,因碳化物易于溶入奥氏体,故使淬火后的硬度峰移向较低温度和出现在较短的奥氏体化时间。

综上所述,GCrl5钢淬火后未溶碳化物在7%左右,残留奥氏体在9%左右(隐晶马氏体的平均含碳量在0.55%左右)为最佳组织组成。

而且,当原始组织中碳化物细小,分布均匀时,在可靠地控制上述水平的显微组织组成时,有利于获得高的综合力学性能,从而具有高的使用寿命。

应该指出,具有细小弥散分布碳化物的原始组织,淬火加热保温时,未溶的细小碳化物会聚集长大,使其粗化。

因此,对于具有这种的原始组织轴承零件淬火加热时间不宜过长,采用快速加热奥氏体化淬火工艺,将可获得更高的综合力学性能。

为了使轴承零件淬回火后表面残留较大的压应力,可在淬火加热时通入渗碳或渗氮的气氛,进行短时间的表面渗碳或渗氮。

由于这种钢淬火加热时奥氏体实际含碳量不高,远低于相图上示出的平衡浓度,因此可以吸碳(或氮)。

当奥氏体含有较高的碳或氮后,其Ms降低,淬火时表层较内层和心部后发生马氏体转变,产生了较大的残留压应力。

GCrl5钢以渗碳气氛和非渗碳气氛加热淬火(均经低温回火)处理后,经接触疲劳试验可以看出,表面渗碳的寿命比未渗碳的提高了1.5倍。

其原因就是渗碳的零件表面具有较大的残留压应力。

结论

影响高碳铬钢滚动轴承零件使用寿命的主要材料因素及控制程度为:

(1)钢在淬火前的原始组织中的碳化物要求细小、弥散。

可采用高温奥氏体化630℃、或420℃高温,也可利用锻轧余热快速退火工艺来实现。

(2)对于GCr15钢淬火后,要求获得平均含碳量为0.55%左右的隐晶马氏体、9%左右Ar和7%左右呈匀、圆状态的未溶碳化物的显微组织。

可利用淬火加热温度和时间来控制得到这种显微组织。

(3)零件淬火低温回火后要求表面残留有较大的压应力,这有助于疲劳抗力的提高。

可采用在淬火加热时进行表面短时间渗碳或渗氮的处理工艺,使得表面残留有较大的压应力。

(4)制造轴承零件用钢,要求具有较高的纯净度,主要是减少O2、N2、P、氧化物和磷化物的含量。

可采用电渣重熔,真空冶炼等技术措施使材料含氧量≤15PPM为宜。

轴承小知识

轴承是否可用的判断,主要是考虑轴承损伤程度、机械性能、重要性、运转条件、至下次检修的期间而决定。

如果有下述缺陷则不能再使用,必须更换新轴承。

内圈、外圈、滚动体、保持架的任何一个上有裂纹或缺口。

1、 

套圈、滚动体任何一个上有断裂。

2、 

滚动道面、挡边、滚动体上有显著的卡伤。

3、 

保持架磨损显著或者铆钉显著松弛。

4、 

滚道面、滚动体上有锈,有伤。

5、 

滚道面、滚动体上有严重的压痕和打痕。

6、 

内圈内径面或外圈外径面有明显的蠕变。

7、 

因热而造成的变色明显。

8、 

封入润滑脂的轴承,密封圈或防尘盖的破损明显。

轴承的保养

为了尽可能长时间地以良好状态维持轴承本来的性能,须保养、检修、以求防事故于未然,确保运转的可靠性,提高生产性、经济性。

保养最好相应机械运转条件的作业标准,定期进行。

内容包括监视运转状态、补充或更换润滑剂、定期拆卸的检查。

作为运转中的检修事项,有轴承的旋转音、振动、温度、润滑剂的状态等等。

轴承使用上的注意事项:

滚动轴承是精密部件,其使用也须相应地慎重进行。

无论使用多么高性能的轴承,如果使用不当,则不会得到预期的高性能。

有关轴承的使用注意事项如下。

(1)、保持轴承及其周围清洁。

即使是眼睛看不到的小尘埃,也会给轴承带来坏影响。

所以,要保持周围清洁,使尘埃不致侵入轴承。

(2)、小心谨慎地使用。

在使用中给与轴承强烈冲击,会产生伤痕及压痕,成为事故的原因。

严重的情况下,会裂缝、断裂,所以必须注意。

(3)、使用恰当的操作工具。

避免以现有的工具代替,必须使用恰当的工具。

(4)、要注意轴承的锈蚀。

操作轴承时,手上的汗会成为生锈的原因。

要注意用干净的手操作,最好尽量带上手套。

轴承的检修

轴承的清洗:

拆卸下轴承检修时,首先记录轴承的外观,确认润滑剂的残存量,取样检查用的润滑剂之后,洗轴承。

作为清洗剂,普通使用汽油、煤油。

拆下来的轴承的清洗,分粗清洗和细清洗,分别放在容器中,先放上金属的网垫底,使轴承不直接接触容器的脏物。

粗清洗时,如果使轴承带着脏物旋转,会损伤轴承的滚动面,应该加以注意。

在粗清洗油中,使用刷子清除去润滑脂、粘着物,大致干净后,转入精洗。

精洗,是将轴承在清洗油中一边旋转,一边仔细的清洗。

另外,清洗油也要经常保持清洁。

轴承的检修和判断:

为了判断拆卸下来的轴承是否可以使用,要在轴承洗干净后检查。

检查滚道面、滚动面、配合面的状态、保持架的磨损情况、轴承游隙的增加及有无关尺寸精度下降的损伤,异常。

非分离型小型球轴承,则用一只手将内圈支持水平,旋转外圈确认是否流畅。

圆锥滚子轴承等分离形轴承,可以对滚动体、外圈的滚道面分别检查。

大型轴承因不能用手旋转,注意检查滚动体、滚道面、保持架、挡边面等外观,轴承的重要性愈高愈须慎重检查。

轴承的润滑目的

滚动轴承的润滑目的是减少轴承内部摩擦及摩损,防止烧粘、其润滑效用如下。

(1)、减少摩擦及摩损。

在构成轴承的套圈、滚动体及保持器的相互接触部分,防止金属接触,减少摩擦、磨损。

(2)、延长疲劳寿命。

轴承的滚动疲劳寿命,在旋转中,滚动接触面润滑良好,则延长。

相反地,油粘度低,润滑油膜厚度不好,则缩短。

(3)、排出摩擦热、冷却。

循环给油法等可以用油排出由摩擦发生的热,或由外部传来的热,冷却。

防止轴承过热,防止润滑油自身老化。

(4)、其他

也有防止异物侵入轴承内部,或防止生锈、腐蚀之效果。

润滑方法:

轴承的润滑方法,分为脂润滑和油润滑。

为了使轴承很好地发挥机能,首先,要选择适合使用条件、使用目的的润滑方法。

若只考虑润滑,油润滑的润滑性占优势。

但是,脂润滑有可以简化轴承周围结构的特长,将脂润滑和油润滑的利弊比较。

轴承的安装

轴承的安装是否正确,影响着精度、寿命、性能。

因此,设计及组装部门对于轴承的安装要充分研究。

希望要按照作业标准进行安装。

作业标准的项目通常如下:

(1)、清洗轴承及轴承关连部件

(2)、检查关连部件的尺寸及精加工情况

(3)、安装

(4)、安装好轴承后的检查

(5)、供给润滑剂

希望在即将安装前,方才打开轴承包装。

一般润滑脂润滑,不清洗,直接填充润滑脂。

润滑油润滑,普通也不必清洗,但是,仪器用或高速用轴承等,要用洁净的油洗净,除去涂在轴承上的防锈剂。

除去了防锈剂的轴承,易生锈,所以不能放置不顾。

再者,已封入润滑脂的轴承,不清洗直接使用。

轴承的安装方法,因轴承结构、配合、条件而异,一般,由于多为轴旋转,所以内圈需要过盈配合。

圆柱孔轴承,多用压力机压入,或多用热装方法。

锥孔的场合,直接安装在锥度轴上,或用套筒安装。

安装到外壳时,一般游隙配合多,外圈有过盈量,通常用压力机压入,或也有冷却后安装的冷缩配合方法。

用干冰作冷却剂,冷缩配合安装的场合,空气中的水分会凝结在轴承的表面。

所以,需要适当的防锈措施。

轴承的损伤:

一般,如果正确使用轴承,可以使用至达到疲劳寿命为止。

但会有意外过早地损伤,不能耐于使用的情况。

这种早期损伤,与疲劳寿命相对,是被称做故障或事故的品质使用限度。

多起因于安装、使用、润滑上的不注意,从外部侵入的异物,对于轴、外壳的热影响之研究不够充分等。

关于轴承的损伤状态如:

滚子轴承的套圈、挡边的卡伤,作为原因可考虑,润滑剂不足、不适合、供排油构造的缺陷、异物的侵入、轴承安装误差、轴的挠曲过大,也会有这些原因重合。

因此,仅调查轴承损伤,很难得知损伤的真正原因。

可是,如果知道了轴承的使用机械、使用条件、轴承周围的构造、了解事故发生前后的情况,结合轴承的损伤状态和几种原因考察,便可以防止同类事故再发生。

轴承的外形尺寸

1.外形尺寸限定轴承外形的一种尺寸,基本外形尺寸为内径、外径、宽度(或高度)及倒角尺寸。

2.轴承内径

向心轴承的内圈内径或推力轴承的轴圈内径。

3.轴承外径

向心轴承的外圈外径或推力轴承的座圈外径。

4.轴承宽度

限定向心轴承宽度的两个套圈端面之间的轴向距离,对于单列圆锥滚子轴承是指外圈背面与内圈背面之间的轴向距离。

5.轴承高度

限定推力轴承高度的两个垫圈背面之间的轴向距离。

6.套圈(垫圈)倒角尺寸

套圈(垫圈)倒角表面在径向或轴向的延长部分。

7.径向倒角尺寸

套圈或垫圈的假想尖角到套圈或垫圈端面与倒角表面交线间的距离。

8.轴向倒角尺寸

套圈或垫圈的假想尖角到套圈或垫圈的内孔或外表面与倒角表面交线间的距离。

9.凸缘宽度

凸缘两端面之间的距离。

10.凸缘高度

凸缘的径向尺寸。

外凸缘的高度是凸缘外表面与外圈外表面之间的径向距离。

11.止动环槽直径

止动环槽的圆柱表面的直径

12.止动环槽宽度 

止动环槽两端面间的轴向距离。

13.止动环槽深度

止动环槽的圆柱表面与外圆柱表面之间的径向距离。

14.调心表面半径

调心座圈、调心座垫圈、调心外圈或调心外座圈的球形表面的曲率半径。

15.调心表面中心高度

推力轴承的调心座圈的球面形背面的曲率中心与相对的轴圈背面之间的轴向距离。

滚动轴承型号代号

1.基本代号 

阿基本代号用来表明轴承的内径、直径系列、宽度系列和类型,一般最多为五位数,先分述如下:

1)轴承内径用基本代号右起第一、H位数字表示。

对常用内径d=20~480mm的轴承内径一般为5的倍数,这两位数字表示轴承内径尺寸被5除得的商数,如04表示d=20mm;

12表示 

d=60mm等等。

对于内径为10mm、12mm、15mm和17mm的轴承,内径代号依次为00、01、02和...

3)轴承的宽度系列(即结构、内径和直径系列都相同的轴承宽度方面的变化系列)用基本代号右起第四位数字表示。

当宽度系图13-4直径系列的对比列为0系列(正常系列)时,对多数轴承在代号中可不标出宽度系列代号O,但对于调心滚子轴承和圆锥滚子轴承,宽度系列代号0应标出。

直径系列代号和宽度系列代号统称为尺寸系列代号。

4)轴承类型代号用基本代号右起第五位数字表示(对圆柱滚子轴承和滚针轴承等类型代号为字母)。

2.后置代号 

轴承的后置代号是用字母和数字等表示轴承的结构、公差及材料的特殊要求等等。

后置代号的内容很多,下面介绍几个常用的代号。

1)内部结构代号是表示同一类型轴承的不同内部结构,用字母紧跟着基本代号表示。

如:

接触角为15°

、25°

和40°

的角接触球轴承分别用C、AC和B表示内部结构的不同。

2)轴承的公差等级分为2级、4级、5级、6级、6X级和0级,共6个级别,依次由高级到低级,其代号分别为/P

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 幼儿读物

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1