常用数学公式大全文档格式.docx
《常用数学公式大全文档格式.docx》由会员分享,可在线阅读,更多相关《常用数学公式大全文档格式.docx(20页珍藏版)》请在冰豆网上搜索。
高
(1)表面积(长×
宽+长×
高+宽×
高)×
2 S=2(ab+ah+bh)
(2)体积=长×
宽×
高 V=abh
5三角形
s面积a底h高
面积=底×
高÷
2 s=ah÷
2
三角形高=面积×
2÷
底
三角形底=面积×
6平行四边形
高 s=ah
7梯形
s面积a上底b下底h高
面积=(上底+下底)×
2s=(a+b)×
h÷
8圆形
S面积C周长∏d=直径r=半径
(1)周长=直径×
∏=2×
∏×
半径C=∏d=2∏r
(2)面积=半径×
半径×
∏
9圆柱体
v:
体积h:
高s;
底面积r:
底面半径c:
底面周长
(1)侧面积=底面周长×
(2)表面积=侧面积+底面积×
(3)体积=底面积×
(4)体积=侧面积÷
2×
半径
10圆锥体
底面半径
体积=底面积×
3
总数÷
总份数=平均数
和差问题的公式
(和+差)÷
2=大数
(和-差)÷
2=小数
和倍问题
和÷
(倍数-1)=小数
小数×
倍数=大数
(或者和-小数=大数)
差倍问题
差÷
(或小数+差=大数)
植树问题
1非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷
株距-1
全长=株距×
(株数-1)
株距=全长÷
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷
株距
株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷
(株数+1)
2封闭线路上的植树问题的数量关系如下
盈亏问题
(盈+亏)÷
两次分配量之差=参加分配的份数
(大盈-小盈)÷
(大亏-小亏)÷
相遇问题
相遇路程=速度和×
相遇时间
相遇时间=相遇路程÷
速度和
速度和=相遇路程÷
追及问题
追及距离=速度差×
追及时间
追及时间=追及距离÷
速度差
速度差=追及距离÷
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷
水流速度=(顺流速度-逆流速度)÷
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷
溶液的重量×
100%=浓度
溶液的重量×
浓度=溶质的重量
浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷
成本×
100%=(售出价÷
成本-1)×
100%
涨跌金额=本金×
涨跌百分比
折扣=实际售价÷
原售价×
100%(折扣<1)
利息=本金×
利率×
时间
税后利息=本金×
时间×
(1-20%)
长度单位换算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年1年=12月
大月(31天)有:
1\3\5\7\8\10\12月
小月(30天)的有:
4\6\9\11月
平年2月28天,闰年2月29天
平年全年365天,闰年全年366天
1日=24小时1时=60分
1分=60秒1时=3600秒
小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×
2C=(a+b)×
2、正方形的周长=边长×
4C=4a
3、长方形的面积=长×
宽S=ab
4、正方形的面积=边长×
边长S=a.a=a
5、三角形的面积=底×
2S=ah÷
6、平行四边形的面积=底×
高S=ah
7、梯形的面积=(上底+下底)×
2S=(a+b)h÷
8、直径=半径×
2d=2r半径=直径÷
2r=d÷
9、圆的周长=圆周率×
直径=圆周率×
2c=πd=2πr
10、圆的面积=圆周率×
定义定理公式
三角形的面积=底×
2。
公式S=a×
正方形的面积=边长×
边长公式S=a×
长方形的面积=长×
宽公式S=a×
b
平行四边形的面积=底×
高公式S=a×
h
梯形的面积=(上底+下底)×
2公式S=(a+b)h÷
内角和:
三角形的内角和=180度。
长方体的体积=长×
高公式:
V=abh
长方体(或正方体)的体积=底面积×
正方体的体积=棱长×
棱长公式:
V=aaa
圆的周长=直径×
π公式:
L=πd=2πr
圆的面积=半径×
S=πr2
圆柱的表(侧)面积:
圆柱的表(侧)面积等于底面的周长乘高。
公式:
S=ch=πdh=2πrh
圆柱的表面积:
圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
S=ch+2s=ch+2πr2
圆柱的体积:
圆柱的体积等于底面积乘高。
V=Sh
圆锥的体积=1/3底面×
积高。
V=1/3Sh
分数的加、减法则:
同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:
用分子的积做分子,用分母的积做分母。
分数的除法则:
除以一个数等于乘以这个数的倒数。
单位换算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1吨=1000千克1千克=1000克=1公斤=2市斤
(5)1公顷=10000平方米1亩=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
数量关系计算公式方面
1.单价×
数量=总价
2.单产量×
数量=总产量
3.速度×
时间=路程
4.工效×
时间=工作总量
小学数学定义定理公式
(二)
一、算术方面
1.加法交换律:
两数相加交换加数的位置,和不变。
2.加法结合律:
三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:
两数相乘,交换因数的位置,积不变。
4.乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:
两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:
(2+4)×
5=2×
5+4×
5。
6.除法的性质:
在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。
7.等式:
等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:
等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:
含有未知数的等式叫方程式。
9.一元一次方程式:
含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。
10.分数:
把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:
12.分数大小的比较:
同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;
若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:
分子比分母小的分数叫做真分数。
17.假分数:
分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18.带分数:
把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:
分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数学公式数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。
如一些基本公式
抛物线:
y=ax*+bx+c
就是y等于ax的平方加上bx再加上c
a>
0时开口向上
a<
0时开口向下
c=0时抛物线经过原点
b=0时抛物线对称轴为y轴
还有顶点式y=a(x+h)*+k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:
y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py
圆:
体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程(x-a)2+(y-b)2=r2注:
(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:
D2+E2-4F>
0
(一)椭圆周长计算公式
椭圆周长公式:
L=2πb+4(a-b)
椭圆周长定理:
椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式:
S=πab
椭圆面积定理:
椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高
三角函数:
两角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A)cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
·
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB-cotA+cotBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:
其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:
角B是边a和边c的夹角
乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<
=>
-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系x1+x2=-b/ax1*x2=c/a注:
韦达定理
判别式b2-4a=0注:
方程有相等的两实根
b2-4ac>
0注:
方程有两个不相等的个实根
b2-4ac<
方程有共轭复数根
公式分类公式表达式
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'
*h
正棱锥侧面积S=1/2c*h'
正棱台侧面积S=1/2(c+c'
)h'
圆台侧面积S=1/2(c+c'
)l=pi(R+r)l球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>
0扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'
L注:
其中,S'
是直截面面积,L是侧棱长
柱体体积公式V=s*h圆柱体V=pi*r2h
图形周长面积体积公式
长方形的周长=(长+宽)×
2
正方形的周长=边长×
4
长方形的面积=长×
宽
正方形的面积=边长×
边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:
(a+b+c)*(a+b-c)*1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]}(“三斜求积”南宋秦九韶)
|ab1|
S△=1/2*|cd1|
|ef1|
【|ab1|
|cd1|为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d),C(e,f),这里ABC
|ef1|
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!
】
秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc为三角形的中线长.
平行四边形的面积=底×
高
梯形的面积=(上底+下底)×
直径=半径×
2半径=直径÷
圆的周长=圆周率×
直径=
圆周率×
圆的面积=圆周率×
半径
长方体的表面积=(长×
高+宽×
长方体的体积=长×
正方体的表面积=棱长×
6
正方体的体积=棱长×
棱长
圆柱的侧面积=底面圆的周长×
圆柱的表面积=上下底面面积