岩土工程数值分析学习笔记DOCWord文档下载推荐.docx

上传人:b****5 文档编号:19723564 上传时间:2023-01-09 格式:DOCX 页数:28 大小:2.28MB
下载 相关 举报
岩土工程数值分析学习笔记DOCWord文档下载推荐.docx_第1页
第1页 / 共28页
岩土工程数值分析学习笔记DOCWord文档下载推荐.docx_第2页
第2页 / 共28页
岩土工程数值分析学习笔记DOCWord文档下载推荐.docx_第3页
第3页 / 共28页
岩土工程数值分析学习笔记DOCWord文档下载推荐.docx_第4页
第4页 / 共28页
岩土工程数值分析学习笔记DOCWord文档下载推荐.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

岩土工程数值分析学习笔记DOCWord文档下载推荐.docx

《岩土工程数值分析学习笔记DOCWord文档下载推荐.docx》由会员分享,可在线阅读,更多相关《岩土工程数值分析学习笔记DOCWord文档下载推荐.docx(28页珍藏版)》请在冰豆网上搜索。

岩土工程数值分析学习笔记DOCWord文档下载推荐.docx

(4)数学模型还会给人造成一种错觉,让人觉得其计算结果也一定会更好、更可靠。

这样可能使人们忽略了精确的数学公式也照样会有出错的可能性。

只有当输入参数的质量和精度很高,并能与数学模型的精度相匹配时,才有可能得到较为准确的计算结果。

措施:

(1)加强对土的本构模型的教学与培训,了解和掌握各种土的本构模型的优点和局限性以及模型参数的离散性。

(2)在使用数值分析方法的同时,不断地积累使用经验,包括他人的经验。

(3)在丰富的使用经验基础上,建立相应的使用规范。

2有限元法软件plaxis理论学习

(1)模型的选用和分析:

Mohr-Coulomb模型(MC):

这种模型被推荐用于问题的初步分析,对于每个土层,可以估计出一个平均刚度常数,由于这个刚度是常数,计算往往会相对较快,可以得到变形的一个初步印象。

五个输入参数,即:

表示土体弹性的E和ν,表示土体塑性的ϕ和c,以及剪胀角ψ。

节理岩石模型(JR):

节理模型是一种各向异性的弹塑性模型,特别适用于模拟包括层理尤其是断层方向在内的岩层行为等。

两个参数ϕ和c。

Hardening-Soil模型(HS):

是一种改进了的模拟岩土行为的模型,适合所有类型的土;

不能用来模拟滞后或者反复循环加载情形。

三个参数三轴加载刚度E50、三轴卸载刚度Eur和固结仪加载刚度Eoed。

我们一般取Eur=3E50和Eoed=E50作为不同土体类型的平均值。

软土蠕变模型(SSC):

软土蠕变模型是一个新近开发的应用于地基和路基等的沉陷问题的模型,通常会过高地预计弹性岩土的行为范围。

软土模型(SS):

软土模型是一种Cam-Clay类型的模型,特别适用于接近正常固结的粘性土的主压缩,可以被Hardening-Soil模型取代。

改进的Cam-Clay模型(MCC):

主要用于模拟接近正常固结的粘性土,在实际应用中是不被推荐的。

如果要对所考虑的问题进行一个简单迅速的初步分析,我们建议使用Mohr-Coulomb模型。

当缺乏好的土工数据时,进一步的高级分析是没有用的。

在许多情况下,当你拥有主导土层的好的数据时,可以利用Hardening-Soil模型

来进行一个额外的分析。

毫无疑问,同时拥有三轴试验和固结仪试验结果的可能

性是很小的。

但是,原位实验数据的修正值对高质量实验数据来说是一个有益的补充最后,软土蠕变模型可以用于分析蠕变(即:

极软土的次压缩)。

用不同的土工模型来分析同一个岩土问题显得代价过高,但是它们往往是值得的。

首先,用Mohr-Coulomb模型来分析是相对较快而且简单的;

其次,这一过程通常会减小计算结果的误差。

(2)各模型的参数:

MOHR-COULOMB模型的基本参数:

E:

’杨氏模量;

v:

’泊桑比;

ϕ:

内摩擦角;

c:

内聚力;

ψ:

剪胀角,这些参数可以从土样的基本试验得到。

杨氏模量E:

在土力学中,初始斜率用E0表示,50%强度处的割线模量由E50表示。

对于具有大范围线弹性行为的材料来说,使E0是符合实际的,但是对于土体加载问题一般使用E50。

如果考虑隧道和开挖问题中的卸载问题要用Eur替换E50.

Tu图2强度参数设置

Tu图1项目设置

泊桑比V:

在许多情况下得到的v值是介于0.3和0.4之间的。

一般地说,除了一维压

缩,这个范围的值还可以用在加载条件下,

在卸载条件下,使用0.15和0.25之间的值更为普遍。

内摩擦角:

PLAXIS可以处理无粘性砂土c=0,但是有一些选项的执行不太好。

为了避免复杂性,我们建议不熟练的用户至少输入一个较小值(使用c>

0.2kPa)。

剪胀角:

以度的方式指定的。

除了严重的超固结土层以外,粘性土通常没有什么剪胀性(ψ=0)。

砂土的剪胀性依赖于密度和摩擦角。

对于石英砂土来说,

ψ=ϕ−30,ψ的值比ϕ的值小30度,然而,剪胀角在多数情况下为零。

ψ的小的负值仅仅对极松的砂土是实际的。

HARDENING-SOIL模型的参数:

 

Tu图2HS模型强度参数设置

软土模型参数:

Tu图3软土模型强度参数设置

(3)单位和符号规定

符号规定:

在平面应变分析里,σzz指向平面外。

轴对称分析里,x代表径向坐标,y代表轴向坐标,z代表切向。

此时,σxx表示径向应力,σzz表示环向应力。

在所有输出数据里,压应力(包括孔隙压力)和压力设为负值,而拉应力和拉力设为正值。

家建模过程:

绘制几何轮廓线设定边界条件

添加荷载

添加材料特性

划分网格

设置初始条件

计算工序分层

计算

警警告:

如果修改已经建好的模型,要意识到必须重新生成网格,有时还包括重新生成初始条件,以便和修改后的模型一致。

Tu图4基本界面

(4)荷载问题:

荷载子菜单包含的选项,用于在几何模型里引入分布荷载、线荷载或集中荷载以及指定位移。

荷载和指定位移既可用于模型边界,也可用于模型内部。

指定位移是为了控制某些点的位移而强加于模型的特殊条件。

大小为零的指定位移即为约束。

注意:

如果在一条几何线上同时施加指定位移和荷载,那么在计算过程中指定位移优先于荷载,在全约束线上施加指定位移,约束则优先于指定位移。

因而,在全约束线段上没有必要施加指定位移、集中荷载、分布荷载。

如果只有一个位移方向是预加的,而其他方向是自由的,那么就可以在自由位移的方向上施加集中荷载、分布荷载。

(5)材料性状种类—材料类型

排水性状:

该设置不产生超静水压。

很明显,它适用于干土,以及由于高渗透性(砂土)和/或缓慢加载的完全排水条件。

该选项也可以用来模拟长期岩土性质,其中不需要模拟不排水加载和固结的精确历史。

不排水性状:

该设置用于研究超静水压的完全发展过程。

由于低透水性(粘土)和/或快速加载,孔隙水渗流有时可以忽略。

注意,要输入有效的模型参数。

非多孔性状:

使用该设置的类组,不论是初始孔压还是超静水压,都不予考虑。

有关

应用可以在模拟混凝土或结构性状的例子里找到。

非多孔性状通常和线

弹性模型组合应用。

输入的饱和容重和渗透性参数对非多孔材料是无效

的。

(6)网格生成

网格的基本单元类型为15节点的三角形单元或6节点的三角形单元。

全局疏密度水平:

很粗疏、粗疏、中等、细密和很细密。

默认情况下,全局疏密度水平为粗疏。

局部疏密度:

在可能出现强烈的应力集中或大变形梯度的区域,最好是用更精确(细密)的有限元元网格来模拟,这通常是在几何模型里出现边缘、角或结构对象的时候用到。

这时候的局部单元尺寸因子就应当等于0.5。

关于网格生成的几点建议:

为了优化有限元计算,可以先用相对粗疏的网格作初始分析。

这样可以检查几何模型的大小是否合适,还可以预计发生应力集中和大变形梯度的位置。

所得成果主要用来加密有限元网格,生成加密的有限元模型。

为了能够顺利地生成详细的有限元网格,首先应当从网格子菜单里选择需要的全局疏密度。

此外,如果还要进行局部加密,那么应当首先加密类组,然后加密几何线,最后再加密几何点。

需要时,可以直接给几何点设局部单元尺寸因子。

(7)初始条件

在几何模型和有限元网格都建好之后,必须明确初始应力状态和初始构造。

初始条件由两个不同的模式组成:

一个模式是生成初始水压(水力条件模式),另一个模式是定义初始

几何构造和生成初始有效应力场(几何构造模式)。

从初始条件返回到几何图形创建模式是允许的,但是一般不这么做,因为这样做可能会丢失一些有关初始条件的信息。

(8)计算

计算分类:

分三种基本计算类型,塑性计算、固结分析和Phi-c折减(安全分析)。

塑性计算:

在弹-塑性变形分析当中,如果不需要考虑超静水压随时间的减小,那么应当选塑性计算。

一般性塑性计算根据未变形的几何图形得出刚度矩阵。

这类计算适用于大多数岩土工程的实际应用情况。

固结分析:

要分析饱和粘性土的超静水压随时间的变化与消散,应该选择固结计算。

一般情况下,执行完不排水塑性计算之后,再执行不添加另外荷载的固结分析。

也可以在固结分析过程中施加荷载。

但是,在接近破坏时要引起注意,因为此时迭代过程可能会不收敛。

Phi-c折减(安全分析):

可以用减小土的强度参数的方法来执行安全分析。

这个过程就叫做Phi-c折减,是一个单独的计算类型。

如果要计算全局安全系数,就应当选择Phi-c折减。

建议在计算工序列表的末尾再定义所有安全分析,并且用起始工序号参数注明是在给哪个计算工序求算安全系数。

plaxis例题模拟

算例一砂土层上圆形基础的沉降(选用柔性基础)

图1表示放置在4m厚砂土层上半径为1m的一个圆形基础。

砂土层下是深厚的坚硬岩石层。

计算土体在上部荷载作用下产生的位移和应力。

选用轴对称模型,竖直方向取4m(到岩石层顶部),水平方向取5m(5倍的基础半径)。

计算过程如下:

图5新建项目参数设置

图6几何模型

图7基础模型参数设置

图8地基模型的初始应力场

图9计算参数设置

图11变形网格

图12变形总位移场

图13内力数据

图14基础的荷载位移曲线

计算结果分析:

基础的沉降值随着距离荷载位置的增大而逐渐衰减;

在350KN的均布荷载下,基础的最大沉降量是0.129m;

最大弯矩是43,178KN/m;

最大剪力是44.063KN。

算例二:

不排水条件下河堤的受力分析

如图1所示的堤身高5m,由渗透性差的粘土构成。

其地基上部6m由软土构成,上层3m为一粘土(clay)层,下层3m为一泥炭(peat)层。

软土层基本上是不透水的,所以河流水位的短期变化并不影响这一部分的孔隙压力分布。

软土层下较大深度范围内为渗透性很好的砂土(sand)层,其上部4m包括在有限元模型之中。

这里假设砂土层中的水与河流的水相通,这意味着砂土层的水头紧密跟随河流的水位变化。

图15新建项目设置

图16几何模型

特特殊位置加密区

图17划分网格

图18第二计算工序一般设置

图19初始应力的设置

图18第一计算工序一般设置

图20第二计算工序一般设置

图19初始应力的设置

图21第二计算工序定义孔隙水压力

图22孔隙水压场

图23因水位变化而产生的位移总量

图24水位上升后堤坝的有效应力

图26水位上升后堤坝的超孔隙水压力

计算结果分析:

图24可以发现模型右边砂土层顶部的有效应力几乎为零,这是由于砂土层内孔隙压力的增加造成的,从这一应力图,也可以发现土堤的变形在其后的粘土层中产生了一个被动应力区。

粘土和泥炭层的不排水性能导致了超静水压的发展。

图23可以看出堤坝在水位变化情况下,土体的总变形,堤顶和堤址后土体隆起,故在施工过程中需要严格处理堤址后土体。

算例三水下土体开挖施工

鉴于几何模型的对称性,分析时只考虑其中一半(左边)。

开挖过程模拟为三个不同的阶段。

地下墙使用板单元来模拟,两侧地下墙和土的相互作用用界面单元来模拟,界面单元可以模拟墙体与土之间产生的滑动摩擦,此摩擦较土之间的摩擦要小些。

地下墙之间的横向支撑用弹簧单元来模拟。

图27几何模型

材料定义:

砂土层、粘土层材料定义如上例,不再叙述,地下连续墙和横向锚杆定义如下:

图28定义地下连续墙的材料

图29定义锚杆的材料

全局网格选用中等级别,在地下连续墙处网格加密。

图31水压力分布场

图30生成网格

图34工序1激活地下连续墙

图33定义计算工序

图32初始土压力分布场

图30划分网格

图33工序1激活地下连续墙

图35工序2第一开挖阶段

图37工序4第二开挖阶段

图38工序5第三开挖阶段

图39水下开挖后变形的网格

图40总变形云图

图41开挖后地下连续墙的弯矩图

图42锚杆的轴力

图44地下连续墙变形的荷载位移关系曲线

由图40可以看出开挖后地下连续墙后集中的剪切区域;

图41显示有效应力主应力的大小和方向;

主应力的方向表明了开挖底部的一个较大的被动土压力区和横向支撑后面的一个小的被动土压力区;

图42显示地下连续墙的最大弯矩为1430KN/m,锚杆支撑内力298.8KN;

图43这一曲线显示了各个施工阶段,其参数ΣMstage在0.0至1.0之间变化,最后阶段曲线斜率不断减小意味着塑性变形逐渐增加,同时,荷载位移曲线的连续性说明开挖在施工末期仍然保持稳定。

总结:

经过一个多月的数值分析学习,我得到了很大的收获,很有意义。

它不仅让我充实了更多的理论知识,更让我开阔了视野,而且还学习了一个新的软件。

学习过程中对有限元理论有了初步的认识,可以应用有限元软件Plaxis进行简单模型的计算。

但是还有很多不足之处,理论水平不高,相关概念不清晰,还不能将现实中的复杂问题进行模拟。

英语词汇翻译:

Geometry:

几何形状Drain:

排水Non-porous:

非多孔介质

Interface:

界面Deformations:

变形Stresses:

应力

Elastic:

弹性Plastic:

塑性Consolidation:

固结

Phi/creduction:

安全分析Plate:

Prescribedultimatestatefullyreached:

完全达到规定的最终状态(计算成功)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1