通信103屠建国翻译1Word下载.docx

上传人:b****5 文档编号:19719673 上传时间:2023-01-09 格式:DOCX 页数:12 大小:60.08KB
下载 相关 举报
通信103屠建国翻译1Word下载.docx_第1页
第1页 / 共12页
通信103屠建国翻译1Word下载.docx_第2页
第2页 / 共12页
通信103屠建国翻译1Word下载.docx_第3页
第3页 / 共12页
通信103屠建国翻译1Word下载.docx_第4页
第4页 / 共12页
通信103屠建国翻译1Word下载.docx_第5页
第5页 / 共12页
点击查看更多>>
下载资源
资源描述

通信103屠建国翻译1Word下载.docx

《通信103屠建国翻译1Word下载.docx》由会员分享,可在线阅读,更多相关《通信103屠建国翻译1Word下载.docx(12页珍藏版)》请在冰豆网上搜索。

通信103屠建国翻译1Word下载.docx

MITLaboratoryforComputerScience,Cambridge,Massachusetts,USA

OregonGraduateInstituteofScience&

Technology,Portland,Oregon,USA

CarnegieMellonUniversity,Pittsburgh,Pennsylvania,USA

1DefiningtheProblem

Speechrecognitionistheprocessofconvertinganacousticsignal,capturedbyamicrophoneoratelephone,toasetofwords.Therecognizedwordscanbethefinalresults,asforapplicationssuchascommands&

control,dataentry,anddocumentpreparation.Theycanalsoserveastheinputtofurtherlinguisticprocessinginordertoachievespeechunderstanding,asubjectcoveredinsection?

.

Speechrecognitionsystemscanbecharacterizedbymanyparameters,someofthemoreimportantofwhichareshowninFigure?

.Anisolated-wordspeechrecognitionsystemrequiresthatthespeakerpausebrieflybetweenwords,whereasacontinuousspeechrecognitionsystemdoesnot.Spontaneous,orextemporaneouslygenerated,speechcontainsdisfluencies,andismuchmoredifficulttorecognizethanspeechreadfromscript.Somesystemsrequirespeakerenrollment---ausermustprovidesamplesofhisorherspeechbeforeusingthem,whereasothersystemsaresaidtobespeaker-independent,inthatnoenrollmentisnecessary.Someoftheotherparametersdependonthespecifictask.Recognitionisgenerallymoredifficultwhenvocabulariesarelargeorhavemanysimilar-soundingwords.Whenspeechisproducedinasequenceofwords,languagemodelsorartificialgrammarsareusedtorestrictthecombinationofwords.

Thesimplestlanguagemodelcanbespecifiedasafinite-statenetwork,wherethepermissiblewordsfollowingeachwordaregivenexplicitly.Moregenerallanguagemodelsapproximatingnaturallanguagearespecifiedintermsofacontext-sensitivegrammar.

Onepopularmeasureofthedifficultyofthetask,combiningthevocabularysizeandthelanguagemodel,isperplexity,looselydefinedasthegeometricmeanofthenumberofwordsthatcanfollowawordafterthelanguagemodelhasbeenapplied(seesection?

foradiscussionoflanguagemodelingingeneralandperplexityinparticular).Finally,therearesomeexternalparametersthatcanaffectspeechrecognitionsystemperformance,includingthecharacteristicsoftheenvironmentalnoiseandthetypeandtheplacementofthemicrophone.

Parameters

Range

SpeakingMode

Isolatedwordstocontinuousspeech

SpeakingStyle

Readspeechtospontaneousspeech

Enrollment

Speaker-dependenttoSpeaker-independent

Vocabulary

Small(<

20words)tolarge(>

20,000words)

LanguageModel

Finite-statetocontext-sensitive

Perplexity

10)tolarge(>

100)

SNR

High(>

30dB)tolaw(<

10dB)

Transducer

Voice-cancellingmicrophonetotelephone

Table:

Typicalparametersusedtocharacterizethecapabilityofspeechrecognitionsystems

Speechrecognitionisadifficultproblem,largelybecauseofthemanysourcesofvariabilityassociatedwiththesignal.First,theacousticrealizationsofphonemes,thesmallestsoundunitsofwhichwordsarecomposed,arehighlydependentonthecontextinwhichtheyappear.Thesephoneticvariabilitiesareexemplifiedbytheacousticdifferencesofthephoneme,Atwordboundaries,contextualvariationscanbequitedramatic---makinggasshortagesoundlikegashshortageinAmericanEnglish,anddevoandaresoundlikedevandareinItalian.

Second,acousticvariabilitiescanresultfromchangesintheenvironmentaswellasinthepositionandcharacteristicsofthetransducer.Third,within-speakervariabilitiescanresultfromchangesinthespeaker'

sphysicalandemotionalstate,speakingrate,orvoicequality.Finally,differencesinsociolinguisticbackground,dialect,andvocaltractsizeandshapecancontributetoacross-speakervariabilities.

Figureshowsthemajorcomponentsofatypicalspeechrecognitionsystem.Thedigitizedspeechsignalisfirsttransformedintoasetofusefulmeasurementsorfeaturesatafixedrate,typicallyonceevery10--20msec(seesectionsand11.3forsignalrepresentationanddigitalsignalprocessing,respectively).Thesemeasurementsarethenusedtosearchforthemostlikelywordcandidate,makinguseofconstraintsimposedbytheacoustic,lexical,andlanguagemodels.Throughoutthisprocess,trainingdataareusedtodeterminethevaluesofthemodelparameters.

Figure:

Componentsofatypicalspeechrecognitionsystem.

Speechrecognitionsystemsattempttomodelthesourcesofvariabilitydescribedaboveinseveralways.Atthelevelofsignalrepresentation,researchershavedevelopedrepresentationsthatemphasizeperceptuallyimportantspeaker-independentfeaturesofthesignal,andde-emphasizespeaker-dependentcharacteristics.Attheacousticphoneticlevel,speakervariabilityistypicallymodeledusingstatisticaltechniquesappliedtolargeamountsofdata.Speakeradaptationalgorithmshavealsobeendevelopedthatadaptspeaker-independentacousticmodelstothoseofthecurrentspeakerduringsystemuse,(seesection).Effectsoflinguisticcontextattheacousticphoneticlevelaretypicallyhandledbytrainingseparatemodelsforphonemesindifferentcontexts;

thisiscalledcontextdependentacousticmodeling.

Wordlevelvariabilitycanbehandledbyallowingalternatepronunciationsofwordsinrepresentationsknownaspronunciationnetworks.Commonalternatepronunciationsofwords,aswellaseffectsofdialectandaccentarehandledbyallowingsearchalgorithmstofindalternatepathsofphonemesthroughthesenetworks.Statisticallanguagemodels,basedonestimatesofthefrequencyofoccurrenceofwordsequences,areoftenusedtoguidethesearchthroughthemostprobablesequenceofwords.

ThedominantrecognitionparadigminthepastfifteenyearsisknownashiddenMarkovmodels(HMM).AnHMMisadoublystochasticmodel,inwhichthegenerationoftheunderlyingphonemestringandtheframe-by-frame,surfaceacousticrealizationsarebothrepresentedprobabilisticallyasMarkovprocesses,asdiscussedinsections,and11.2.Neuralnetworkshavealsobeenusedtoestimatetheframebasedscores;

thesescoresarethenintegratedintoHMM-basedsystemarchitectures,inwhathascometobeknownashybridsystems,asdescribedinsection11.5.

Aninterestingfeatureofframe-basedHMMsystemsisthatspeechsegmentsareidentifiedduringthesearchprocess,ratherthanexplicitly.Analternateapproachistofirstidentifyspeechsegments,thenclassifythesegmentsandusethesegmentscorestorecognizewords.Thisapproachhasproducedcompetitiverecognitionperformanceinseveraltasks.

2StateoftheArt

Commentsaboutthestate-of-the-artneedtobemadeinthecontextofspecificapplicationswhichreflecttheconstraintsonthetask.Moreover,differenttechnologiesaresometimesappropriatefordifferenttasks.Forexample,whenthevocabularyissmall,theentirewordcanbemodeledasasingleunit.Suchanapproachisnotpracticalforlargevocabularies,wherewordmodelsmustbebuiltupfromsubwordunits.

PerformanceofspeechrecognitionsystemsistypicallydescribedintermsofworderrorrateE,definedas:

whereNisthetotalnumberofwordsinthetestset,andS,I,andDarethetotalnumberofsubstitutions,insertions,anddeletions,respectively.

Thepastdecadehaswitnessedsignificantprogressinspeechrecognitiontechnology.Worderrorratescontinuetodropbyafactorof2everytwoyears.Substantialprogresshasbeenmadeinthebasictechnology,leadingtotheloweringofbarrierstospeakerindependence,continuousspeech,andlargevocabularies.Thereareseveralfactorsthathavecontributedtothisrapidprogress.First,thereisthecomingofageoftheHMM.HMMispowerfulinthat,withtheavailabilityoftrainingdata,theparametersofthemodelcanbetrainedautomaticallytogiveoptimalperformance.

Second,muchefforthasgoneintothedevelopmentoflargespeechcorporaforsystemdevelopment,training,andtesting.Someofthesecorporaaredesignedforacousticphoneticresearch,whileothersarehighlytaskspecific.Nowadays,itisnotuncommontohavetensofthousandsofsentencesavailableforsystemtrainingandtesting.Thesecorporapermitresearcherstoquantifytheacousticcuesimportantforphoneticcontrastsandtodetermineparametersoftherecognizersinastatisticallymeaningfulway.Whilemanyofthesecorpora(e.g.,TIMIT,RM,ATIS,andWSJ;

seesection12.3)wereoriginallycollectedunderthesponsorshipoftheU.S.DefenseAdvancedResearchProjectsAgency(ARPA)tospurhumanlanguagetechnologydevelopmentamongitscontractors,theyhaveneverthelessgainedworld-wideacceptance(e.g.,inCanada,France,Germany,Japan,andtheU.K.)asstandardsonwhichtoevaluatespeechrecognition.

Third,progresshasbeenbroughtaboutbytheestablishmentofstandardsforperformanceevaluation.Onlyadecadeago,researcherstrainedandtestedtheirsystemsusinglocallycollecteddata,andhadnotbeenverycarefulindelineatingtrainingandtestingsets.Asaresult,itwasverydifficulttocompareperformanceacrosssystems,andasystem'

sperformancetypicallydegradedwhenitwaspresentedwithpreviouslyunseendata.Therecentavailabilityofalargebodyofdatainthepublicdomain,coupledwiththespecificationofevaluationstandards,hasresultedinuniformdocumentationoftestresults,thuscontributingtogreaterreliabilityinmonitoringprogress(corpusdevelopmentactivitiesandevaluationmethodologiesaresummarizedinchapters12and13respectively).

Finally,advancesincomputertechnologyhavealsoindirectlyinfluencedourprogress.Theavailabilityoffastcomputerswithinexpensivemassstorage

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 其它

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1