正弦波方波锯齿波函数发生器材料详实.docx

上传人:b****3 文档编号:1968893 上传时间:2022-10-25 格式:DOCX 页数:18 大小:346.02KB
下载 相关 举报
正弦波方波锯齿波函数发生器材料详实.docx_第1页
第1页 / 共18页
正弦波方波锯齿波函数发生器材料详实.docx_第2页
第2页 / 共18页
正弦波方波锯齿波函数发生器材料详实.docx_第3页
第3页 / 共18页
正弦波方波锯齿波函数发生器材料详实.docx_第4页
第4页 / 共18页
正弦波方波锯齿波函数发生器材料详实.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

正弦波方波锯齿波函数发生器材料详实.docx

《正弦波方波锯齿波函数发生器材料详实.docx》由会员分享,可在线阅读,更多相关《正弦波方波锯齿波函数发生器材料详实.docx(18页珍藏版)》请在冰豆网上搜索。

正弦波方波锯齿波函数发生器材料详实.docx

正弦波方波锯齿波函数发生器材料详实

课程设计说明书

 

课程设计名称:

模拟电路课程设计

课程设计题目:

正弦波方波锯齿波函数发生器

学院名称:

信息工程学院

专业:

电子信息工程班级:

学号:

姓名:

评分:

教师:

2011年04月07日

《模拟电路》课程设计任务书

2010-2011学年第2学期 第1周-2周

题目

设计制作一个产生正弦波-方波-三角波函数转换器

内容及要求

①    输出波形频率范围为0.02Hz~20kHz且连续可调;

②    正弦波幅值为±2V,;

③    方波幅值为2V;

④    三角波峰-峰值为2V,占空比可调;

⑤     设计电路所需的直流电源可用实验室电源。

进度安排

1.布置任务、查阅资料、选择方案,领仪器设备:

2天;

2.领元器件、制作、焊接:

3天

3.调试:

2天

4.验收:

0.5天

学生姓名:

朱翔

指导时间2011年2月21日~2011年3月4日

指导地点:

E楼610室

任务下达

2011年2月21日

任务完成

2011年3月4日

考核方式

1.评阅□√2.答辩□3.实际操作□√ 4.其它□

指导教师

彭嵩

系(部)主任

陈琼

注:

1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要

  本次课程设计是要求做一个能够产生正弦波-方波-三角波函数转换器.众所周知,制作函数发生器的电路有很多种.本次设计采用的电路是基于运放和晶体二极管的试验电路.

  由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波,三角波可直接通过RC振荡电路产生.各种波形频率段的调整可以由外电路的改变来实现,例如,改变电容的值.

先收集所有有用的资料,选择好电路图。

    最后使用multisim软件模拟整个制作的电路,在模拟中,要解决出现的种种问题.

关键字:

RC振荡,电压比较器,积分电路

 

第一章设计的目的及任务…………………………………………………5

1.1课程设计的目的……………………………………………5

1.2课程设计的任务与要求……………………………………5

1.3课程设计的技术指标………………………………………5

第二章总体电路设方案……………………………………………………6

2.1正弦波发生电路的工作原理…………………………………6

2.2正弦波转换方波电路的工作原理……………………………9

2.3方波转换成三角波电路的工作原理…………………………11

2.4总电路图………………………………………………………12

第三章单元电路设计…………………………………………………………13

3.1正弦波发生电路的设计………………………………………13

3.2正弦波转换方波电路的设计…………………………………15

3.3方波转换成三角波电路的设计………………………………16

 

第四章电路仿真……………………………………………………18

4.1电路仿真……………………………………………………18

第五章收获体会……………………………………………………………20

第六章参考文献……………………………………………………………21

附录一……………………………………………………………22

附录二……………………………………………………………23

第一章设计的目的及任务

1.1课程设计的目的:

1.掌握电子系统的一般设计方法

2.掌握模拟IC器件的应用

3.培养综合应用所学知识来指导实践的能力

4.掌握常用元器件的识别和测试

5.熟悉常用仪表,了解电路调试的基本方法

1.2课程设计任务与要求:

1.设计一个能产生正弦波、方波、三角波信号发生器,

2能同时输出一定频率一定幅度的3种波形:

正弦波、和三角波;

3可以用±12V或±15V直流稳压电源供电;

1.3课程设计的技术指标:

1.设计、组装、调试函数发生器

2.输出波形:

正弦波、方波、三角波;

3.频率范围:

在0.02Hz-20kHZ范围内可调;

4.输出电压:

方波幅值为2V,三角波幅值为2V,正弦波峰峰值为2V,占空比可调。

 

第二章总体电路设方案

2.1正弦波发生电路的工作原理:

产生正弦振荡的条件:

正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。

正弦波产生电路的基本结构是:

引入正反馈的反馈网络和放大电路。

其中:

接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。

因此,正弦波产生电路一般包括:

放大电路;反馈网络;选频网络;稳幅电路个部分。

正弦波振荡电路的组成判断及分类:

(1)放大电路:

保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。

(2)选频网络:

确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。

(3)正反馈网络:

引入正反馈,使放大电路的输入信号等于其反馈信号。

(4)稳幅环节:

也就是非线性环节,作用是输出信号幅值稳定。

判断电路是否振荡。

方法是:

(1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产生振荡

(2)放大电路的结构是否合理,有无放大能力,静态工作是否合适;

(3)是否满足幅度条件

正弦波振荡电路检验,若:

(1)则不可能振荡;

(2)振荡,但输出波形明显失真;

(3)产生振荡。

振荡稳定后。

此种情况起振容易,振荡稳定,输出波形的失真小

分类:

按选频网络的元件类型,把正先振荡电路分为:

RC正弦波振荡电路;LC正弦波振荡电路;石英晶体正弦波振荡电路。

 

RC正弦波振荡电路:

常见的RC正弦波振荡电路是RC串并联式正弦波振荡电路,它又被称为文氏桥正弦波振荡电路。

串并联网络在此作为选频和反馈网络。

它的电路图如图

(1)所示:

它的起振条件为:

它的振荡频率为:

它主要用于低频振荡。

要想产生更高频率的正弦信号,一般采用LC正弦波振荡电路。

它的振荡频率为:

石英振荡器的特点是其振荡频率特别稳定,它常用于振荡频率高度稳定的的场合。

 

(1)

2.2正弦波转换方波电路的工作原理:

在单限比较器中,输入电压在阀值电压附近的任何微小变化,都将引起输出电压的跃变,不管这种微小变化是来源于输入信号还是外部干扰。

因此,虽然单限比较器很灵敏,但是抗干扰能力差。

而滞回比较器具有滞回特性,即具有惯性,因此也就具有一定的抗干扰能力。

从反向输入端输人的滞回比较器电路如图1a所示,滞回比较器电路中引人了正反馈。

从集成运放输出端的限幅电路可以看出,UO=±UZ。

集成运放反相输人端电位UP=UI同相输入端电位

  令UN=UP求出的uI就是阀值电压,因此得出

  输出电压在输人电压u,等于阀值电压时是如何变化的呢?

假设ui<-UT,那么UN一定小于up,因而UO=+UZ,所以up=+UYO。

只有当输人电压ui增大到+UT,再增大一个无穷小量时,输出电压UO才会从+UT跃变为-UT。

同理,假设UI>+UT,那么UN一定大于up,因而UO=-UZ,所以up=-UT。

只有当输人电压UI减小到-UT,再减小一个无穷小量时,输出电压UO才会从-UT跃变为+UT。

可见,UO从+UT跃变为-UT和从-UT跃变为+UT的阀值电压是不同的,电压传输特性如图b)所不。

  从电压传输特性上可以看出,当-UT<uI<+UT时,UO可能是-UT,也可能是+UT。

如果uI是从小于-UT,的值逐渐增大到-UT

曲线具有方向性,如图b)所示。

实际上,由于集成运放的开环差模增益不是无穷大,只有当它的差模输人电压足够大时,输出电压UO才为±UZ。

UO在从+UT变为-UT或从-UT变为+UT的过程中,随着uI的变化,将经过线性区,并需要一定的时间。

滞回比较器中引人了正反馈,加快了UO的转换速度。

例如,当UO=+UZ、uP=+UT时,只要uI略大于+UT足以引起UO的下降,即会产生如下的正反馈过程:

UO的下降导致uP下降,而UP的下降又使得UO进一步下降,反馈的结果使UO迅速变为-UT,从而获得较为理想的电压传输特性。

本电路中该电路的作用是将正弦信号转变成方波信号,其传输特性曲线如下图所示:

正弦波传输特性

2.3方波转换成三角波电路的工作原理:

当输入信号为方波时,其输出信号为三角波,电路波形图如下:

2.4总电路图

 

第三章单元电路设计

3.1正弦波发生电路的设计

本电路中采用RC桥式正弦波振荡电路产生正弦波,其电路图如下所示

RC桥式正弦振荡电路

该电路Rf回路串联两个并联的二极管,如上图所示串联了两个并联的1BH62,这样利用电流增大时二极管动态电阻减小、电流减小时动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。

此时输出电压系数为

Au=1+(Rf+rd)/R1

RC振荡的频率为:

f0=1/(2∏RC)

该电路中R=51KC=10nF

f0=1/(2*3.14*51000*10-8)≈312Hz

T=1/f0=1/312=3.2*10-3S=3.2ms

用Multisim10.0对电路进行仿真得到下图

仿真波形

从图中可得出产生的正弦波最大值Umax=13.000V;

T=799.220us×4=3196.88us≈3.2ms.

F0=1/T=312Hz.

仿真得出的数据与理论计算一样,电路正确。

 

3.2正弦波转换方波电路的设计

本电路中采用滞回电压比较器将正弦波转成方波,其电路原理如下图所示

滞回电压比较器电路原理图

滞回电压比较器原理前面有描述,此处不赘述。

本电路中用到的稳压管为1N5759A,其稳压电压为±1.7V

电路中阈值电压为:

UT1=UREF-UZ

UT2=UREF+UZ

本电路中UREF=0,所以

UT1=-UZ

UT2=UZ

用Multisim10.0对其进行仿真得到如下波形图

波形仿真:

从波形中可以得到方波电压为±0.35V,与理论一样,可得出电路是正确的。

3.3方波转换成三角波电路的设计

本电路中方波转成三角波采用积分电路,其电路原理如下图所示

积分电路图

积分电路分工为:

U0=-+u0(t1)

电路仿真如下图所示

第四章电路仿真

4.1电路仿真

电路总体仿真图如下所示

总电路图如下所示

该电路分为三部分,第一部分为RC桥式正弦振荡电路,其功能是利用RC振荡产生特定频率的正弦波;第二部分为电压比较器电路,其功能为将正弦波转成方波;第三部分为积分电路,其功能为利用积分电路将方波转成三角波;

在正弦波产生电路中f=1/(2∏RC),改变RC的值可以改变电路的信号频率,在电压比较器中,改变参考电压UREF的值可以改变方波的比例,

 

第五章收获体会

在确定了电路、领好元器件之后,首先对电路进行了布局。

采是的方法是逐一焊接电路。

首先选择一个波形电路来焊接,在焊接完电路后并检查完一些焊接

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1