毕业论文变压器的设计Word文件下载.docx

上传人:b****6 文档编号:19568797 上传时间:2023-01-07 格式:DOCX 页数:14 大小:94.36KB
下载 相关 举报
毕业论文变压器的设计Word文件下载.docx_第1页
第1页 / 共14页
毕业论文变压器的设计Word文件下载.docx_第2页
第2页 / 共14页
毕业论文变压器的设计Word文件下载.docx_第3页
第3页 / 共14页
毕业论文变压器的设计Word文件下载.docx_第4页
第4页 / 共14页
毕业论文变压器的设计Word文件下载.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

毕业论文变压器的设计Word文件下载.docx

《毕业论文变压器的设计Word文件下载.docx》由会员分享,可在线阅读,更多相关《毕业论文变压器的设计Word文件下载.docx(14页珍藏版)》请在冰豆网上搜索。

毕业论文变压器的设计Word文件下载.docx

3.3半桥电路…………………………………………………………………………8

3.4全桥电路…………………………………………………………………………9

3.5推挽电路…………………………………………………………………………10

4.开关电源的高频变压器设计………………………………………………………11

4.1高频变压器的设计原则与设计要求……………………………………………11

4.2高频变压器的设计方式…………………………………………………………11

4.3一种实际高频变压器的设计过程………………………………………………15

4.430KHZ高频开关电源变压器设计……………………………………………15

结束语…………………………………………………………………………………18

参考文献………………………………………………………………………………19

致谢……………………………………………………………………………………20

摘要

随着电源技术的不断发展,高频化和高功率密度化已经成为开关电源的研究标的目的和发展趋势,变压器是开关电源的核心部件,并且随着频率和功率的不断提高,其对电源系统的性能产生影响也日益重要,因此高频开关电源的变压器设计是实现开关电源发展方针的关键。

本文主要研究高频变压器的工作原理,感化和分类。

高频变压器和低频变压器的工作原理一样.就是频率分歧所用的铁芯材料分歧.低频变压器一般用铁芯,高频变压器用铁氧体磁芯或空芯。

变压器的工作原理是用电磁感应原理工作的。

常见的带隔分开关电源按按电路的拓扑结构:

正激式、反激式、推挽式、半桥式

和全桥式,本人简单介绍其工作原理,了解变压器在开关电源中的感化。

变压器设计其实就是实现开关电源发展方针的关键,高频变压器的设计要求包孕:

使用条件,完成功能,提高效率,降低成本。

关键字:

开关电源,高频变压器设计

High-frequencyswitchingpowertransformerdesign

Withthecontinuousdevelopmentofpowertechnology,high-frequencyandhighpowerdensityswitchingpowersupplytechnologyhasbecometheresearchanddevelopmenttrend,switchingpowersupplytransformeristhecorecomponent,andwithincreasingfrequencyandpower,itspowersupplysystemincreasinglyimportantimpactonperformance,sohigh-frequencyswitchingpowersupplyswitchingpowersupplytransformerdesignistoachievedevelopmentgoals.

Thispaperstudiestheworkingprincipleofhigh-frequencytransformer,functionandclassification.Withtheisolationofseveralcommonlyusedinswitchingpowersupplytransformerswitchrolesandwork.Anddesigna30KHZfrequencyswitchingpowersupplytransformers.

Keywords:

switchingpowersupplydesignofhigh-frequencytransformer

前言

随着电子信息技术的不断发展,各类电子设备的电源系统在客观上要求小化、轻量化和高可靠性,制约这个方针实现的根本技术就是开关电源高频化技术。

开关电源变压器是开关电源的核心部件,是实现能量(功率)转换和传输的主要器件同时该器件又是开关电源体积和重量的主要占有者和发热源。

因此,要实现开电源的小型轻量化、平面智能化和高可靠性的方针,关键在于开关电源变压器的高频化。

1国表里研究现状

20世纪60年代以前,人们遍及采用的是线性调节器式直流稳压电源,即传统的线性电源,这类电源由于串联晶体管的高损耗和工频变压器较大的体积和重量,使得其效率低、很难实现小型化,功率密度一般仅为0.2~0.3形/加3。

20世纪60年代,开关调节器式直流稳压电源(开关电源)由于具有功率转换效率高、稳压范围宽、功率密度比大、重量轻等优点,取代了线性电源。

1964年,日本NEC杂志颁布了两篇具有指导性的文章:

一篇为“高频技术使AC/DC电源小型化"

另一篇为“脉冲调制用于电源小型化"

这两篇文章指明了开关电源小型化的研究标的目的,即高频化和脉冲宽度调制技术。

1973年,美国摩托罗拉公司颁布了一篇题为“触发起20kHz的革命"

的文章,从此在世界范围内掀起了高频开关电源的开发高潮,并将DC/DC转换器作为开关调节器用于开关电源,使电源的功率密度由1~4W/砌3增加到40~50形/in3。

1980年以前,DC/DC转换器的开关频率为20"

--'

50kHz,从20世纪80年代起,由于一些新功率半导体开关器件、功率模块和高频磁性材料的泛起,提高开关频率已成为减小开关电源体积和重量的主要手段,同时也改善了开关电源的动态性能;

八十年代国外开关电源的研究频率就已经在1~IOMHZ;

二十世纪末期,国外开关电源的功率也迅速获得提高,10---30kW的大功率开关电源在产品上已很成熟,更高功率的开关电源也有很快发展,如俄罗斯研制的用于雷达发射机的二140kW开关电源n21。

目前国0.5~3MBz的高频开关电源已实用化,200~500kHz已成为输出IOOW以下开关电源的标开关频率,开关电源的功率密度己向120W/in3的方针发展。

开关电源的高频化和高功率密度化的发展趋势增加了变压器优化设计的难度:

一方面高频化缩小了变压器的体积并增加了磁心和绕组中的损耗,导致变压器发热严重且散热概况减小,这对高频变压器的散热设计提出了更高的要求;

另一方面开关频率的增加导致变压器中的分布参数,即漏感和分布电容,对变换器的性能产生重要的影响。

对于开关式变换器来说,漏感会引起电压尖峰,对电路中的器件产生损坏,分布电容会引起电流尖峰并延长充电时间,增大开关以及二极管的损耗,降低变压器的效率和可靠性,因此在这种工作模式下希望尽可能的减小变压器中的分布参数.

国外研究高频开关电源变压器较早,八十年代研究频率就已经在110MHzt,目前国外0.53MHz的高频开关电源已实用化,文献[1]报道的2MHz、50W变压器的几何线度只有1.3cm摆布。

目前,我国大部分隔隔离分散关变压器的研究在500kHz以下,只有为数不多的几个单位研究频率在500kHz以上。

已有的研究表白,除了要有适于高频(0.5—3MHz)工作的磁芯材料之外,高频开关电源变压器的设计对其性能有至关重要的影响。

因此研究高频变压器的设计技术对我国的高频开关电源以及整机系统的发展都是十分重要的。

  高频变压器随着工作频率的提高,设计不断发生变化,不断泛起新的软磁材料、新的磁芯结构、新的导线材料和绝缘材料、新的线圈结构和组装结构等,还会不断泛起新的设计方式。

为适应电子设备愈来愈轻薄短小,高频电子变压器的发展标的目的从立体结构向平面结构、片式结构、薄膜结构发展,从而形成一代又一代新的高频电子变压器:

平面变压器、片式变压器、薄膜变压器。

目前,电子变压器向着高频化、平面化、集成化、模快化、数组化和混合化标的目的发展,并随之带来新的分析方式,如电磁场分析方式和新的设计技术,如优化计、多场型集成综合设计,以及新的制造工艺对传统工艺的挑战。

由于频率的提高和磁性材料的发展,许多半导体工艺技术可以应用于高频变压器的制造中。

在小功率情况下,高频变压器能够与功率变换器通过厚膜或薄膜等工艺已经融为一体了。

磁芯是高频变压器的最关键部件,磁芯结构的主要发展标的目的是如何形成形状和尺寸最佳的平面磁芯、片式磁芯和薄膜磁芯。

薄膜磁芯和磁性材料是现在高频电子变压器最活跃的发展标的目的之一,将成为MHz以上高频电子变压器的主要磁芯材料和结构,当薄膜电子变压器的高度做到1mm以下时,就可以装入各种卡片内。

随着高频变压器整体结构的发展,线圈结构主要发展标的目的:

平面线圈→片式线圈→薄膜线圈,其中又包孕多层结构。

对于立体结构的高频变压器线圈,考虑集肤效应和邻近效应,导线材料采用多股绞线(里兹线),有时也采用扁铜线和铜带,绝缘材料采用耐热等级高的材料,采用双层和三层绝缘导线,以减少线圈尺寸。

对于平面结构线圈,导线采用铜箔,大大都采用单层和多层印刷电路板制造,也有采用必然形状的铜箔多个折叠而成,绝缘材料一般采用B级材料。

对于薄膜结构线圈,导线采用铜、银和金薄膜,制成梳形、螺旋形和运动场形等图形,绝缘材料采用H级和C级材料。

总之,薄膜变压器是现在正在大力开发的高频电子变压器。

2高频变压器的基本原理和感化

高频变压器和低频变压器的工作原理一样.就是频率分歧所用的铁芯材料分歧.低频变压器一般用铁芯,高频变压器用铁氧体磁芯或空芯。

变压器有两组线圈。

初级线圈和次级线圈。

次级线圈在初级线圈外边。

当初级线圈通上交流电时,变压器铁芯产生交变磁场,次级线圈就产生感应电动势。

变压器的线圈的匝数比等于电压比。

例如:

初级线圈是500匝,次级线圈是250匝,初级通上220V交流电,次级电压就是110V。

变压器能降压也能升压。

如果初级线圈比次级线圈圈数少就是升压变压器,可将低电压升为高电压.

高频变压器的定义与分类

高频变压器是相对于音频和工频变压器而言的。

但是,由于高频的范围太广,要明确的划分是艰巨的。

因此,我们可将工作频率在音频以上的变压器统称为高频变压器。

应该说,这种叫法是不严格的。

为此,按照其工作频率,我们将高频变压器分为以下几类;

1.按频率范围分为

a.kHz级高频变压器,它是指工作频率在20kHz至几百kHz的高频变压器;

b.MHz级高频变压器,它是指工作频率在1MHz以上的高频变压器。

2.按工作频带分为

a.单频或窄频级高频变压器,它是指工作频率为单频或是一个很窄的频段,如变换器变压器、振荡器变压器等;

b.宽频带变压器,它是指工作在一个很宽频率范围内的变压器,如阻抗变换器变压器、通讯变压器、宽带功率放大器变压器等

3常用的带隔离的开关电源中变压器的感化

广义地说,凡是采用半导体功率开关器件作为开关管,通过对开关管的高频开通与关断控制,将一种电能形态转换成为另一种电能形态的装置,叫做开关转换器。

以开关转换器为主要组成部分,用闭环自动控制来稳定输出电压,并在电路中加入庇护环节的电源,叫做开关电源(SwitchingPOWERSupply)。

如果用高频DC/DC转换器作为开关电源的开关转换器时,就称为高频开关电源H3。

高频开关电源的基本电路由“交流一直流转换电路”、“开关型功率变换器”“整流滤波电路”和“控制电路”等组成。

高频开关电源的分类方式有多种:

(1)按DC/DC转换器的开关条件,可分为硬开关(HardSwitching)和软

开关(SoftSWITCHING)两种。

(2)按驱动方式,可分为自激式和他激式。

(3)按输入与输出之间是否有电气隔离,可分为隔离式和非隔离式。

(4)按电路的拓扑结构:

①隔离式有正激式、反激式、推挽式、半桥式

和全桥式:

②非隔离式有降压型、升压型和升降压型等。

3.1正激电路

电路的工作过程:

开关S开通后,变压器绕组N1两端的电压为上正下负,与其耦合的N2绕组两端的电压也是上正下负.因此VD1处于通态,VD2为断态,电感L的电流逐渐增长;

S关断后,电感L通过VD2续流,VD1关断.S关断后变压器的激磁电流经N3绕组和VD3流回电源,所以S关断后承受的电压为0.

变压器的磁心复位:

开关S开通后,变压器的激磁电流由零开始,随着时间的增加而线性的增长,直到S关断.为防止变压器的激磁电感饱和,必需设法使激磁电流在S关断后到下一次再开通的一段时间内降回零,这一过程称为变压器的磁心复位。

正激电路的抱负化波形:

变压器的磁心复位时间为:

TIST=N3*Ton/N1

输出电压:

输出滤波电感电流连续的情况下:

UO/UI=N2*Ton/N1*T

磁心复位过程:

只有少数问题能够用解析的方式求出精确解,这类问题往往是方程性质比力简单,几何边界相当轨则。

而对于大大都工程技术问题,由于研究对象的几何形状比力复杂或者问题的某些特征是非线形的,则很少有解析解。

对于这类问题往往有两种解决方式:

一是将方程和边界条件简化为容易处理的问题,从而获得它在简化状态下的解。

这种方式只在有限的情况下是可行的,因为过多的简化可能导致解与实际值偏差很大或者甚至是荒谬的。

另一种方式是利用计算机强大的计算能力,使用数值模拟方式求得满足工程要求的数值解。

高频开关电源变压器的设计,由于所涉及的几个主要变量是非线性的,因此目前国表里对高频开关电源变压器的设计主要有两类方式,一类是简化求解:

一类是数值模拟。

高频开关电源变压器的设计相对于低频要复杂得多,诸如趋肤效应、邻近效应、畴壁共振等许多因素在低频下可被忽略,而在高频下却变得十分重要。

以下几个问题是高频变压器设计中讨论最多的问题。

1.趋肤深度

当导线中流过高频交流电流时,电流将向导线概况集中,导致导线概况电流密度增大。

这种现象称为趋肤效应。

由于趋肤效应,交变电流沿导线概况向导线中心衰减,当衰减到概况电流强度的l,e时所达到的径向深度,称之为趋肤深度。

趋肤深度与电流的频率、导线的磁导率及电导率有关,其关系为:

(式中.f为频率,u为导线磁导率,P为导线电阻率。

其中P是—个随温度变化的量。

)交流电阻的理论值和实测值很接近,只是实测的交流电阻值较理论值稍大一些,这主要是由于Dowell模型假设漏磁平行导体交界面分布,这只有在导体的宽度和厚度之比很大时才近似成立,而且也没有考虑导体之间的邻近效应以及气隙的边缘效应。

但由于理论值和实测值的偏差不大,因此还是很适用于高频变压器绕组的交流电阻和漏感的预测。

同时,许多论文对Dowell的结论做了修正和发展指出Dowell模型虽然广泛使用,而且比力有效。

可是这个著名的因子并无理论按照,通过比力实验值与Dowell模型理论值,为Dowell交流电阻系数计算公式引人了3个修正参数,这3个参数用来校正分析曲线,使其与实测结果更吻合。

目前常用的数值模拟方式主要有:

有限元法、边界元法、离散单元法和有限差分法,其中最常用的是有限元法,有限元计算结果已成为各类工业产品设计和性能分析的可靠依据。

国际著名的通用有限元软件有几十种,常用的有:

SAP、ANSYS、ANSOFT、NASTRAN、ADINA、ALGOR—FEM等,其中ANSYS、ANSOFF、NASTRAN软件是变压器分析中最常用的软件。

利用有限元软件可以有效地分析变压器的电感、电容、涡流、磁通密度、电流密度、电磁场分布、能量损耗、温升等。

有限元分析的过程主要有三步:

前处理、求解计算及后处理。

前处理阶段主要的工作是选择分析模块、定义单元类型和材料特性、建立实体模型、对模型进行网格划分、施加载荷和边界条件等。

求解计算阶段主要的工作是选择求解类型并设置求解选项。

后处理阶段的主要工作是读取求解结果,对求解结果进行图形、列表显示等。

对于变压器的电磁场分析,主要有二(三)维谐性分析和二(三)维瞬态分析。

前者适于激励源坚守必然交变规律(如正弦、余弦)的情况:

后者适于激励源无轨则变化的情况。

对于变压器的温升,要利用有限元软件的耦合场来分析,并且还要为软件提供变压器的热导率、比热、对流换热系数、焓、辐射系数、生热率等。

目前,利用数值模拟方式设计高频开关电源变压器主要分为定性分析和定量分析。

前者一般采用二维分析,其方针不是关心具体量值,而是比力在分歧的情况下,某一量的变化情况,从而获得一些指导性的设计原则。

后者则重视具体的量值,尽可能通过数值模拟方式获得高频开关电源变压器设计中某些不易计算量的精确值并和实验值进行比力,最终达到在必然程度上替代实验的目的。

因此相对于二维分析,三维分析更适于定量分析,然而由于三维分析的复杂性,因此很多情况下也用二维分析来进行定量分析。

2.定性分析

Dai等人加通过二维有限元方式,研究了绕组间隙及初次级绕组的宽度对边缘效应的影响,如图2所示。

为了研究边缘效应与绕组间隙的关系,作者设计的分析模型见图2a,其中磁芯为罐状磁芯,初次级为0.127mm(5mil)的铜薄带。

通过有限元分析,获得500kHz时分歧绕组间隙下的磁场分布情况。

图2b和2c所示的绕组间隙分别为0.254mm(10mil)和0.127mm(50mil)的情况。

作者由此得出结论:

漏感随绕组间隙的增大而单调递增。

(c)然而要精确地进行定量分析,现在还存在以下艰巨:

(1)复杂的有限元模型,尤其是三维模型,往往很难通过有限元软件本身来建立,而是要通过该软件与CAD软件的接口去调用CAD软件所建立的模型这里有两个问题,首先这类CAD软件在国内刚风行不久,很难找到合适好用的该类软件:

其次用该类CAD软件建立的三维复杂模型,比如三维绕组模型,在调入到有限元软件中后,有时会产生错误。

(2)大型有限元模型对计算机系统资源要求很高,并且运算时间较长。

(3)不容易检查分析结果的正确性,只能与实测值进行比对。

高频变压器的设计包孕:

磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,线圈参数的设计,组装结构的选择和温升校核等内容。

  

(1)磁芯材料的选择  设计高频变压器,选择软磁材料是关键的第一步,各种磁芯的特性比力如表1所示。

高频变压器磁芯一般使用软磁材料。

软磁材料有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在必然线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率必然的情况下,可减轻磁芯体积。

磁芯矫顽力低,磁滞回环面积小,则铁耗也少[4]。

电阻率高则涡流小,铁耗也小。

铁氧体材料是复合氧化物烧结体,和其它软磁磁芯材料一样,软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯,缺点是工作磁通密度低、磁导率不高、磁致伸缩大、对温度变化比力敏感。

它适合高频下使用,因此高频变压器一般采用铁氧体材料作为磁芯。

(2)磁芯结构的选择

  磁芯基本结构有:

①叠片,凡是由硅钢或镍钢薄片冲剪成E、I、F、O等形状,叠成一个铁芯。

②环形铁芯,由O型薄片叠成,也可由窄长的硅钢、合金钢带卷绕而成。

③C形铁芯,此种铁芯可免去环形铁芯绕线艰巨的缺点,由二个C型铁芯对接而成。

④罐形铁芯,它是磁芯在外,铜线圈在里,免去环形线圈不便的一种结构形式,可以减少EMI。

缺点是内部线圈散热不良,温升较高。

高频变压器设计时选择磁芯结构应考虑的因素:

降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线便当等。

在高频变压器磁芯结构设计中,对窗口面积的大小,要综合考虑各种因素后来决意。

为了防止高频电源变压器从里向外和从外向里的电磁干扰,有些磁芯结构在窗口外面有封锁和半封锁外壳。

封锁外壳屏蔽电磁干扰感化好,但散热和接线不便当,必需留有接线孔和出气孔。

半封锁外壳,封锁的地方起屏蔽电磁干扰感化,不封锁的地方用于接线和散热。

如果窗口完全开放,接线和散热便当,屏蔽电磁干扰感化差。

  (3)磁芯参数ΔB的选择

  高频变压器磁芯参数选择时,必需注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。

对于磁通单标的目的变化的工作模式:

ΔB既受饱和磁通密度限制,又受损耗限制。

对于磁通双标的目的变化的工作模式:

工作磁滞回线包抄的面积比局部回线大得多,损耗也大得多,ΔB主要受损耗限制,而且还要注意泛起的直流偏磁问题。

对电感器功率传送方式,磁导率是有气隙后的等值磁导率,一般都比磁化曲线测出的磁导率小。

(4)线圈参数的计算与选择

  高频变压器的线圈参数包孕:

匝数、导线截面(直径)、导线形式、绕组分列和绝缘放置。

原绕组匝数按照外加激磁电压或者原绕组激磁电感(储存能量)来决意,匝数不能过多也不能过少。

如果匝数过多,会增加漏感和绕线工时;

如果匝数过少,在外加激磁电压比力高时,有可能使匝间电压降和层间电压降增大,而必需加强绝缘。

副绕组匝数由输出电压决意。

导线截面(直径)决意于绕组的电流密度。

还要注意的是导线截面(直径)的大小还与漏感有关。

高频变压器的绕组分列形式有:

①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组分列形式,这样有利于原绕组对磁芯的绝缘放置;

②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组分列形式,这样有利于减少漏感。

另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。

对于绝缘放置,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。

等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。

其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以包管绝缘,又可以简化绕线工艺。

另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。

如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。

(5)组装结构的选择

  高频变压器组装结构分为卧式和立式两种。

如果选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组装结构,上下概况比力大,有利于散热;

其它的都采用立式结构。

另外,组装结构中采用的夹件和接线端子等尽量采用标准件,以便于外协加工,降低成本。

(6)工作点的确定

  对于新买来的磁芯,由于厂家提供的磁感应强度值并不准确,一般先要粗略测试它,具体方式:

将调压器接至原线圈,用示波器观察副线圈输出电压波形,将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变,此时磁芯已饱和,按照公式:

U=4.44fN1Φm可推知在Φ

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 营销活动策划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1