数学reportWord文档格式.docx
《数学reportWord文档格式.docx》由会员分享,可在线阅读,更多相关《数学reportWord文档格式.docx(11页珍藏版)》请在冰豆网上搜索。
vStepsandcalculations9
vResult:
11
vAnalysis11
3.0ConclusionandRecommendation12
Reference13
1.0Introduction
Inrecentyears,withtheincreasingpopulation,thedemandofsomenecessitiesoflifesuchashousesisgoingupatthesametime.Therefore,theproblemofhousinghasalreadybecomeafocusofattentionaroundtheworld.ThisreportwillstudythehousesalesissueinAustraliabyanalyzingtwolikelyfactors(seasonandwages)whichmayinfluencetheamountofnewhousesalesfromyear2009to2013,andpredictingthefuturetrendofhouseselling.Theaimofitistohelpthelandagentsdealwellwiththerelationbetweenhousesupplyandhousedemandandgainmoreprofits.Theanalysisinthisreportwillbedividedintothreeparts.Thefirstpartwillanalyzetheinfluenceofseasonusingthemethodofindexnumber.Thenextpartwillshowtherelationbetweenpeoplewagesandthenewhousesaleswiththemethodofcorrelationandregressionanalysis.Thelastpartforecastthefuturetrendbythemethodoftimeseriesanalysis.ThedatausedinthisreportarethenumberofAustralianeverymonth’snewhousesalesandaveragewagesoflocalpeoplefrom2009to2013.AllthesedataaresecondarydatawhichwerecollectedinthewebsitecalledTradingeconomics.
().
2.0CalculationandAnalysis
Inordertobalancethenewhousesupplyanddemand,wecandotwothingsbycalculatingandanalysis.TheoneisthatweneedtoknowwhatwillinfluencethenewhousesalesinAustralia,andchangetheamountofsupplyrelyonthesefactorstoexactlysatisfycustomers’demandandavoidsurplusorshortage.Theotheroneistopredictthefuturetrendofnewhousesales,anditcanalsohelpachievethesamegoalthatmentionedabove.
2.1LikelyInfluenceFactors
Seasonandwagesaretwocommonfactorswhichwillinfluencepurchasingpower.Therefore,weassumetheywillinfluencenewhousesalesaswell,andthen,wedosomecalculationandanalysistoproveourassumption.
2.1.1Season
Inthissection,weusetheindexnumberanalysistointerpretseasonalvariation.Theprocessofremovingtheseasonalinfluencesfromdataiscalleddeseasonalizationofdataorseasonaladjustment.Inordertodothiswecanuseaseasonalindex.Theseasonalindexisanumberwhichisaweightedproportionoftheannualnumbersthatoccurinaparticularquarterortimeperiod(VICTORIAUNIVERSITY2013,p299).Therefore,thisreportusestheseasonalindexnumbertoanalyzetheinfluenceofseasontothenewhousesales.Thesimpleaveragemethodisusedtocalculatetheseasonalindex.
vStepsandcalculations
1.Collectthenewhousesalesforeachmonthsfrom2009to2013onthewebsite.
2009
2010
2011
2012
2013
1
6667
7567
6522
5230
5008
2
7200
7208
6623
5344
4806
3
7414
7347
7009
4824
4994
4
7496
7788
7036
5133
5327
5
6983
7331
6870
5028
5373
6
7001
6847
6265
5065
5766
7
7024
6348
5701
4787
5399
8
7855
6134
5785
4510
5712
9
7517
6034
5595
4350
5971
10
7002
6438
5684
4264
5698
11
7060
6366
6114
4502
5903
12
6871
6385
5645
4815
5959
2.Takethreemonthasaquarter,andcalculatetheaverageamountofeachquarter.
Q1
21281
22122
20154
15398
14808
Q2
21480
21966
20171
15226
16466
Q3
22396
18516
17081
13647
17082
Q4
20933
19189
17443
13581
17560
Mean=sum/amount
mean
23440.75
23827.25
22180.5
22176.5
3.Calculatethemeanofallperiods.
meanofallperiods
22906.25
4.Calculateindexnumberofeachquarter.
Seasonalindexnumber=meanofeachquarter/meanofallperiods*100
index
1.023334243
1.040207367
0.968316508
0.968141883
5.Calculatethedeseasonalizedvalueofeveryquarterfrom2009to2013.
Deseasonalizedvalue=actualvalue/seasonalindexnumber*100
20795.74699
21617.57036
19694.44504
15046.89216
14470.34545
20649.72878
21116.94331
19391.32585
14637.46603
15829.53604
23128.8012
19121.84689
17639.89343
14093.53233
17640.92615
21621.83082
19820.44197
18016.9873
14027.90257
18137.83735
6.Comparetheactualvaluetodeseasonalizedvaluefrom2009to2013(therankofeachquarter).
Rank
vResult
Thetrendof3outof5yearsarenotchange(2010,2012,2013),andtheother2yearsarealsoonlychangeforalittle(2009,2011).
vAnalysis
Wecancomparedthedeseasonalizedvaluetotheactualvalueofeachyear,ifitshowsthesametrend,itmeansseasonmakesnodifferenttothesales;
however,iftheyaredifferent,itmeansseasonisanimportantfactortothenewhousesales.
Inthisreport,wecomparedthe2values,andfoundthatthetrendsofthe2valuesarequitesimilar.Therefore,thisreportarguesthatthefactorofseasonhaveinfluenceonthenewhousesalesinAustraliafrom2009to2013,butitonlyhaveverylittleinfluence.Thus,seasonmaynotbeanessentialfactorwhichcaninfluencenewhousesalesinAustralia.
2.1.2Wages
Inthissection,weusethecorrelationandregressionanalysistointerprettherelationbetweennewhousesalesandpeople’swages.Correlationandregressionanalysisisusedtodescribethestrengthanddirectionoftherelationshipbetweentwovariables(VICTORIAUNIVERSITY2013,p233).Whenstudytherelationshipbetweennewhousesalesandpeople’s,first,inregressionanalysispart,wedecidetodrawtheregressionlinebyeyejusttohelpushavearoughestimateoftheirrelation;
andthen,incorrelationanalysispart,wedecidetousePearsonProduct-MomentCorrelationCoefficient(r)toknowtheircorrelationindetail.
1.Welettheaveragewagesandamountofnewhousesalestobethetwovariablesxandyrespectivelyanddrawascatterdiagram.
2.Wedoaroughestimatefortheirrelationbydrawingaregressionlinebyeye.
Itcanbeseenclearlythatthereisanegativerelationbetweenthenewhousesalesandpeople’swages.
3.Wecalculatethecorrelationcoefficienttohelpusknowthedegreeofcorrelationbyusingtheformula:
.
4.Wetestthesignificanceofcorrelationcoefficientbyusingthepvalue.
WecangetN=5,soN-2=3,and
0.83>
0.805
Afterthecalculation,wegetthecorrelationcoefficientis-0.83whichcanrepresentahighnegativecorrelationbetweenwagesandnewhousesales.Thenwetestsignificanceofcorrelationcoefficientbyusingthepvaluewhichshowshowlikelytherelationshipisduetochance.Oursamplesizeis5sothedegreesoffreedomis3,thenwefindthepvaluetocomparewith0.83.Wecanfind0.83>0.805thatmeanstherelationshipissignificantatthe0.1levelandp<0.1.
TheresultofcalculationhasshownusthehighcorrelationbetweenAustraliannewhousesalesandpeople’swageswhichmeanswagesisanimportantinfluencefactorofnewhousesales.Manypeoplemaywonderwhythemoremoneypeopleearnthelesshousestheydemand.Thereasonisthathouseisadurableandnecessaryproductforpeople.Whentheyearnmoremoneyanditisenoughforthemtobuytheirhousesinthisyear,theycanbuynewhouseinthisyearimmediatelybecausetheyneedhousestolive;
andnextyear,althoughtheirincomeisstillincreasing,theywillnothavetobuyanothernewhousebecauseonehouseisenoughforthem,anditcanbeusedinseveraldecades.Asaresult,morewagesmakemorepeoplehaveabilitytobuytheirhousesin“thisyear”andlessin“nextyear”,thus,itshowsanegativerelationbetweennewhousesalesandpeople’swages.
2.2FutureTrendAnalysis
Inthissection,weusethetimeseriesanalysistoforecastthenumberofAustraliannewhousesalesinthefuture.Timeseriesanalysisisusedtopredictwhatmayhappeninthefutureonthebasisofwhathasbeenhappeninginthepass(VICTORIAUNIVERSITY2013,p264).Whenwearestudyingthefuturetrendofnewhousesalesbycalculation,theLeastSquaresMethodisadopted.
1.Plotthesalesofnewhousesfrom2009to2013onagraphinpolygonformat.Jointheminadottedline.
2.Makeafrequencytabletotabulatethisinformation.
3.Codethetimeonx-axis.Becausefiveyearsisanoddnumber,labelthemidpointas‘0’andotherpointsaspositiveornegativewholenumberdeviationfrom‘0’.Accordingly,thecodedtimeare-2,-1,0,1and2.
Year
Sales(y)
CodedTime(x)
(xy)
(x)²
86,090
-2
-172,180
81,793
-1
-81,793
74,854
57,852
65,916
131,832
Total
366,505
-64,289
4.Calculatethevalueof‘a’and‘b’usingtheformula.Thenobtainthetrendline.
5.Findthreepoints’valueswithtimecodesof-2,0and2onthegraph.
-2(2009year)
0(2011year)
2(2013year)
73,301-6,428.9×
(-2)
(0)
73,301-6,428