bkmsolch249e corrected 8910Word文档下载推荐.docx

上传人:b****5 文档编号:19512281 上传时间:2023-01-07 格式:DOCX 页数:16 大小:112.93KB
下载 相关 举报
bkmsolch249e corrected 8910Word文档下载推荐.docx_第1页
第1页 / 共16页
bkmsolch249e corrected 8910Word文档下载推荐.docx_第2页
第2页 / 共16页
bkmsolch249e corrected 8910Word文档下载推荐.docx_第3页
第3页 / 共16页
bkmsolch249e corrected 8910Word文档下载推荐.docx_第4页
第4页 / 共16页
bkmsolch249e corrected 8910Word文档下载推荐.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

bkmsolch249e corrected 8910Word文档下载推荐.docx

《bkmsolch249e corrected 8910Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《bkmsolch249e corrected 8910Word文档下载推荐.docx(16页珍藏版)》请在冰豆网上搜索。

bkmsolch249e corrected 8910Word文档下载推荐.docx

rXYZ=(1.30×

1.18×

1.00×

0.90)1/5–1=0.0911=9.11%

Despitethefactthatthetwostockshavethesamearithmeticaverage,thegeometricaverageforXYZislessthanthegeometricaverageforABC.ThereasonforthisresultisthefactthatthegreatervarianceofXYZdrivesthegeometricaveragefurtherbelowthearithmeticaverage.

d.Intermsof“forwardlooking”statistics,thearithmeticaverageisthebetterestimateofexpectedrateofreturn.Therefore,ifthedatareflecttheprobabilitiesoffuturereturns,10%istheexpectedrateofreturnforbothstocks.

5.a.Time-weightedaveragereturnsarebasedonyear-by-yearratesofreturn:

Year

Return=(capitalgains+dividend)/price

2007−2008

[($120–$100)+$4]/$100=24.00%

2008−2009

[($90–$120)+$4]/$120=–21.67%

2009−2010

[($100–$90)+$4]/$90=15.56%

Arithmeticmean:

(24%–21.67%+15.56%)/3=5.96%

Geometricmean:

(1.24×

0.7833×

1.1556)1/3–1=0.0392=3.92%

b.

Date

Cash

Flow

Explanation

1/1/07

–$300

Purchaseofthreesharesat$100each

1/1/08

–$228

Purchaseoftwosharesat$120lessdividendincomeonthreesharesheld

1/1/09

$110

Dividendsonfivesharesplussaleofoneshareat$90

1/1/10

$416

Dividendsonfoursharesplussaleoffoursharesat$100each

416

110

Date:

1/1/071/1/081/1/091/1/10

228

300

Dollar-weightedreturn=Internalrateofreturn=–0.1607%

6.

Time

Cashflow

Holdingperiodreturn

(–$90)=–$270

1

$100

(100–90)/90=11.11%

2

0%

3

a.Time-weightedgeometricaveragerateofreturn=

(1.1111×

1.0×

1.0)1/3–1=0.0357=3.57%

b.Time-weightedarithmeticaveragerateofreturn=(11.11%+0+0)/3=3.70%

Thearithmeticaverageisalwaysgreaterthanorequaltothegeometricaverage;

thegreaterthedispersion,thegreaterthedifference.

c.Dollar-weightedaveragerateofreturn=IRR=5.46%

[Usingafinancialcalculator,enter:

n=3,PV=–270,FV=0,PMT=100.Thencomputetheinterestrate,orusetheCF0=−300,CF1=100,F1=3,thencomputeIRR].TheIRRexceedstheotheraveragesbecausetheinvestmentfundwasthelargestwhenthehighestreturnoccurred.

7.a.Thealphasforthetwoportfoliosare:

αA=12%–[5%+0.7×

(13%–5%)]=1.4%

αB=16%–[5%+1.4×

(13%–5%)]=–0.2%

Ideally,youwouldwanttotakealongpositioninPortfolioAandashortpositioninPortfolioB.

b.Ifyouwillholdonlyoneofthetwoportfolios,thentheSharpemeasureistheappropriatecriterion:

UsingtheSharpecriterion,PortfolioAisthepreferredportfolio.

8.

a.

StockA

StockB

(i)

Alpha=regressionintercept

1.0%

2.0%

(ii)

Informationratio=

0.0971

0.1047

(iii)

*Sharpemeasure=

0.4907

0.3373

(iv)

**Treynormeasure=

8.833

10.500

*TocomputetheSharpemeasure,notethatforeachstock,(rP–rf)canbecomputedfromtheright-handsideoftheregressionequation,usingtheassumedparametersrM=14%andrf=6%.Thestandarddeviationofeachstock’sreturnsisgivenintheproblem.

**ThebetatousefortheTreynormeasureistheslopecoefficientoftheregressionequationpresentedintheproblem.

b.(i)Ifthisistheonlyriskyassetheldbytheinvestor,thenSharpe’smeasureistheappropriatemeasure.SincetheSharpemeasureishigherforStockA,thenAisthebestchoice.

(ii)Ifthestockismixedwiththemarketindexfund,thenthecontributiontotheoverallSharpemeasureisdeterminedbytheappraisalratio;

therefore,StockBispreferred.

(iii)Ifthestockisoneofmanystocks,thenTreynor’smeasureistheappropriatemeasure,andStockBispreferred.

9.Weneedtodistinguishbetweenmarkettimingandsecurityselectionabilities.Theinterceptofthescatterdiagramisameasureofstockselectionability.Ifthemanagertendstohaveapositiveexcessreturnevenwhenthemarket’sperformanceismerely“neutral”(i.e.,haszeroexcessreturn),thenweconcludethatthemanagerhasonaveragemadegoodstockpicks.Stockselectionmustbethesourceofthepositiveexcessreturns.

Timingabilityisindicatedbythecurvatureoftheplottedline.Linesthatbecomesteeperasyoumovetotherightalongthehorizontalaxisshowgoodtimingability.Thesteeperslopeshowsthatthemanagermaintainedhigherportfoliosensitivitytomarketswings(i.e.,ahigherbeta)inperiodswhenthemarketperformedwell.Thisabilitytochoosemoremarket-sensitivesecuritiesinanticipationofmarketupturnsistheessenceofgoodtiming.Incontrast,adecliningslopeasyoumovetotherightmeansthattheportfoliowasmoresensitivetothemarketwhenthemarketdidpoorlyandlesssensitivewhenthemarketdidwell.Thisindicatespoortiming.

Wecanthereforeclassifyperformanceforthefourmanagersasfollows:

SelectionAbility

TimingAbility

A.

Bad

Good

B.

C.

D.

10.a.Bogey:

(0.60×

2.5%)+(0.30×

1.2%)+(0.10×

0.5%)=1.91%

Actual:

(0.70×

2.0%)+(0.20×

1.0%)+(0.10×

0.5%)=1.65%

Underperformance:

0.26%

b.SecuritySelection:

(1)

(2)

(3)=

(1)×

(2)

Market

Differentialreturn

withinmarket

(Manager–index)

Manager'

s

portfolioweight

Contributionto

performance

Equity

–0.5%

0.70

−0.35%

Bonds

–0.2%

0.20

–0.04%

0.0%

0.10

0.00%

Contributionofsecurityselection:

−0.39%

c.AssetAllocation:

Excessweight

(Manager–benchmark)

Index

Return

0.10%

2.5%

0.25%

–0.10%

1.2%

–0.12%

0.5%

Contributionofassetallocation:

0.13%

Summary:

Securityselection–0.39%

Assetallocation0.13%

Excessperformance–0.26%

11.a.Manager:

(0.30×

20%)+(0.10×

15%)+(0.40×

10%)+(0.20×

5%)=12.50%

Bogey:

(0.15×

12%)+(0.30×

15%)+(0.45×

14%)+(0.10×

12%)=13.80%

Addedvalue:

–1.30%

b.Addedvaluefromcountryallocation:

Country

IndexReturn

minusbogey

U.K.

0.15

−1.8%

−0.27%

Japan

–0.20

–0.24%

U.S.

−0.05

0.2%

−0.01%

Germany

−0.18%

Contributionofcountryallocation:

−0.70%

c.Addedvaluefromstockselection:

withincountry

(Manager–Index)

Manager’s

countryweight

0.08

0.30%

2.4%

0.00

−0.04

0.40%

−1.6%

−0.07

0.20%

−1.4%

Contributionofstockselection:

−0.6%

Countryallocation–0.70%

Stockselection−0.60%

Excessperformance–1.30%

12.Support:

Amanagercouldbeabetterperformerinonetypeofcircumstancethaninanother.Forexample,amanagerwhodoesnotiming,butsimplymaintainsahighbeta,willdobetterinupmarketsandworseindownmarkets.Therefore,weshouldobserveperformanceoveranentirecycle.Also,totheextentthatobservingamanageroveranentirecycleincreasesthenumberofobservations,itwouldimprovethereliabilityofthemeasurement.

Contradict:

Ifweadequatelycontrolforexposuretothemarket(i.e.,adjustforbeta),thenmarketperformanceshouldnotaffecttherelativeperformanceofindividualmanagers.It

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 天文地理

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1