考研大数据结构图地必背算法及知识点Word文档下载推荐.docx
《考研大数据结构图地必背算法及知识点Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《考研大数据结构图地必背算法及知识点Word文档下载推荐.docx(21页珍藏版)》请在冰豆网上搜索。
T=T+{(u,v)}
U=U+{v}
(3)结束。
按照Prim方法,从顶点1出发,该网的最小生成树的产生过程如图:
为实现Prim算法,需设置两个辅助closedge,用来保存U到集合V-U的各个顶点中具有最小权值的边的权值。
对每个Vi∈(V-U)在辅助数组中存在一个相应的分量closedge[i-1],它包括两个域:
typedefstructArcNode
{
intadjvex;
//adjex域存储该边依附的在U中的顶点
VrTypelowcost;
//lowcost域存储该边上的权重
}closedge[MAX_VERTEX_NUM];
显然:
初始状态时,U={v1}(u1为出发的顶点),则到V-U中各项中最小的边,即依附顶点v1的各条边中,找到一条代价最小的边(u0,v0)=(1,3)为生成树上一条边。
同时将v0(=v3)并入集合U中。
然后修改辅助数组的值。
1)将closedge[2].lowcost=0;
//表示顶点V3三已经并入U
2)由于边(v2,v3)的权值小于closedge[1].lowcost,故需修改closedge[1]为边(v2,v3)及其权值,同理修改closedge[4],closedge[5].
closedge[1].adjvex=3.
closedge[1].lowcost=5.
closedge[4].adjvex=1.
closedge[4].lowcost=5.
closedge[5].adjvex=3.
closedge[5].lowcost=6.
以此类推,直至U=V;
下图给出了在用上述算法构造网图7.16的最小生成树的过程中:
Prim算法实现:
按照算法框架:
当无向网采用二维数组存储的邻接矩阵存储时,Prim算法的C语言实现为:
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//记录从顶点集U到V—U的代价最小的边的辅助数组定义:
//struct{
//VertexTypeadjvex;
//VRTypelowcost;
//}closedge[MAX_VERTEX_NUM]
voidMiniSpanTree_PRIM(MGraphG,VertexTypeu){
//用普里姆算法从第u个顶点出发构造网G的最小生成树T,输出T的各条边。
k=LocateVex(G,u);
for(j=0;
j<
G.vexnum;
++j)
if(j!
=k)closedge[j]={u,G.arcs[k][j].adj};
//{adjvex,lowcost}
closedge[k].lowcost=0;
//初始,U={u}
for(i=1;
i<
++i){//选择其余G.vexnum-1个顶点
k=minimum(closedge);
printf(closedge[k].adjvex,G.vexs[k]);
//输出生成树的边
//第k顶点并入U集
closedge[k].lowcost=0;
for(j=0;
G.vexnum;
if(G.acrs[k][j].adj<
closedge[j].lowcost)closedge[j]={G.vexs[k],G.arcs[k][j].adj};
}//for
}//MiniSpanTree
假设网中有n个顶点,则第一个进行初始化的循环语句的频度为n,第二个循环语句的频度为n-1。
其中有两个内循环:
其一是在closedge[v].lowcost中求最小值,其频度为n-1;
其二是重新选择具有最小代价的边,其频度为n。
由此,普里姆算法的时间复杂度为O(n2),与网中的边数无关,因此适用于求边稠密的网的最小生成树。
2.克鲁斯卡尔(Kruskal):
由点到线,适合边稀疏的网。
时间复杂度:
O(e*loge)
Kruskal算法是一种按照网中边的权值递增的顺序构造最小生成树的方法。
基本思想是:
1)设无向连通网为G=(V,E),令G的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T由图G中的n个顶点构成,顶点之间没有一条边,这样T中各顶点各自构成一个连通分量。
2)在E中选择代价最小的边,若该边依附的顶点落在T中不同的连通分量,则将此边加入到T中,否则舍弃此边而选择下一条边(若该边依附的两个顶点属于同一个连通分量,则舍去此边,以免造成回路)。
依此类推,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。
按照Kruskal方法构造最小生成树的过程如图所示:
在构造过程中,按照网中边的权值由小到大的顺序,不断选取当前未被选取的边集中权值最小的边。
依据生成树的概念,n个结点的生成树,有n-1条边,故反复上述过程,直到选取了n-1条边为止,就构成了一棵最小生成树。
Kruskal算法的实现:
算法的框架:
构造非连通图T=(V,{})
k=i=0;
//k为边数
while(k《<
n-1){
i++;
检查边E中第i条边的权值
最小边(u,v)
若(u,v)加入T不是T产生回路,
则(u,v)加入T,且k++
}
c语言实现:
C语言实现Kruskal算法,其中函数Find的作用是寻找图中顶点所在树的根结点在数组father中的序号。
需说明的是,在程序中将顶点的数据类型定义成整型,而在实际应用中,可依据实际需要来设定。
21
22
23
24
25
26
27
28
29
30
31
32
33
typedefintelemtype;
typedefstruct{
elemtypev1;
elemtypev2;
intcost;
}EdgeType;
voidKruskal(EdgeTypeedges[],intn)
/*用Kruskal方法构造有n个顶点的图edges的最小生成树*/
{intfather[MAXEDGE];
inti,j,vf1,vf2;
for(i=0;
n;
i++)father[i]=-1;
i=0;
j=0;
while(i<
MAXEDGE&
&
n-1)
{vf1=Find(father,edges[i].v1);
vf2=Find(father,edges[i].v2);
if(vf1!
=vf2)
{father[vf2]=vf1;
j++;
printf(“%3d%3d\n”,edges[i].v1,edges[i].v2);
}
//find函数
intFind(intfather[],intv)
/*寻找顶点v所在树的根结点*/
{intt;
t=v;
while(father[t]>
=0)
t=father[t];
return(t);
2.AOV网与拓扑排序:
由偏序定义得到拓扑有序的操作便是拓扑排序。
建立模型是AOV网
2.1.AOV网(Activityonvertexnetwork)
所有的工程或者某种流程可以分为若干个小的工程或阶段,这些小的工程或阶段就称为活动。
若以图中的顶点来表示活动,有向边(弧)表示活动之间的优先关系,则这样活动在顶点上的有向图称为AOV网(ActivityOnVertexNetwork)。
在AOV网中,若从顶点i到顶点j之间存在一条有向路径,称顶点i是顶点j的前驱,或者称顶点j是顶点i的后继。
若<
i,j>
是图中的弧,则称顶点i是顶点j的直接前驱,顶点j是顶点i的直接后驱。
AOV网中的弧表示了活动之间存在的制约关系。
例如,计算机专业的学生必须完成一系列规定的基础课和专业课才能毕业。
学生按照怎样的顺序来学习这些课程呢?
这个问题可以被看成是一个大的工程,其活动就是学习每一门课程。
这些课程的名称与相应代号如表所示。
课程之间的优先关系图:
该图的拓扑有序系列:
注意:
在AOV-网中不应该出现有向环,因为存在环意味着某项活动应以自己为先决条件。
若设计出这样的流程图,工程便无法进行。
而对程序的数据流图来说,则表明存在一个死循环。
因此,对给定的AOV-网应首先判定网中是否存在环。
检测的办法是对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV-网中必定不存在环。
2.2.拓扑排序
离散数学基础知识:
首先复习一下离散数学中的偏序集合与全序集合两个概念。
若集合A中的二元关系R是自反的、非对称的和传递的,则R是A上的偏序关系。
集合A与关系R一起称为一个偏序集合。
若R是集合A上的一个偏序关系,如果对每个a、b∈A必有aRb或bRa,则R是A上的全序关系。
集合A与关系R一起称为一个全序集合。
直观地看,偏序指集合中仅有部分成员之间可比较,而全序指集合中全体成员之间均可比较。
[例如],图7.25所示的两个有向图,图中弧(x,y)表示x≤y,则(a)表示偏序,(b)表示全序。
若在(a)的有向图上人为地加一个表示v2≤v3的弧(符号“≤”表示v2领先于v3),则(a)表示的亦为全序,且这个全序称为拓扑有序(TopologicalOrder),而由偏序定义得到拓扑有序的操作便是拓扑排序。
2.3拓扑排序算法
对AOV网进行拓扑排序的方法和步骤是:
1、从AOV网中选择一个没有前驱的顶点(该顶点的入度为0)并且输出它;
2、从网中删去该顶点,并且删去从该顶点发出的全部有向边;
3、重复上述两步,直到剩余的网中不再存在没有前驱的顶点为止。
这样操作的结果有两种:
一种是网中全部顶点都被输出,这说明网中不存在有向回路;
另一种就是网中顶点未被全部输出,剩余的顶点均不前驱顶点,这说明网中存在有向回路。
以下图(a)中的有向图为例,图中v1,和v6没有前驱,则可任选一个。
假设先输出v6,在删除v6及弧<
v6,v4>
,<
v6,v5>
之后,只有顶点v1没有前驱,则输出vl且删去vl及弧<
v1,v2>
、<
v1,v3>
和<
v1,v4>
,之后v3和v4都没有前驱。
依次类推,可从中任选一个继续进行。
最后得到该有向图的拓扑有序序列为:
v6-v1-v4-v3-v2-v5
图AOV-网及其拓扑有序序列产生的过程
(a)AOV-网;
(b)输出v6之后;
(c)输出v1之后;
(d)输出v4之后;
(e)输出v3之后;
(f)输出v2之后
为了实现上述算法,对AOV网采用邻接表存储方式,并且邻接表中顶点结点中增加一个记录顶点入度的数据域,即顶点结构设为:
顶点表结点结构的描述改为:
typedefstructvnode{/*顶点表结点*/
intcount/*存放顶点入度*/
VertexTypevertex;
/*顶点域*/
EdgeNode*firstedge;
/*边表头指针*/
}VertexNode;
当然也可以不增设入度域,而另外设一个一维数组来存放每一个结点的入度。
算法中可设置了一个堆栈,凡是网中入度为0的顶点都将其入栈。
为此,拓扑排序的算法步骤为:
1、将没有前驱的顶点(count域为0)压入栈;
2、从栈中退出栈顶元素输出,并把该顶点引出的所有有向边删去,即把它的各个邻接顶点的入度减1;
3、将新的入度为0的顶点再入堆栈;
4、重复②~④,直到栈为空为止。
此时或者是已经输出全部顶点,或者剩下的顶点中没有入度为0的顶点。
为了避免重复检测入度为零的顶点,可另设一栈暂存所有入度为零的顶点。
StatusTopologicalSort(ALGraphG){
//有向图G采用邻接表存储结构。
//若G无回路,则输出G的顶点的1个拓扑序列并返回OK,否则ERROR。
FindInDegree(G,indegree);
//对各顶点求入度indegree[0..vernum-1]
InitStack(S);
for(i=0;
++i)
if(!
indegree[i])Push(S,i)//建零入度顶点栈,s入度为0者进栈
count=0;
//对输出顶点计数
while(!
StackEmpty(S)){
Pop(S,i);
printf(i,G.vertices[i].data);
++count;
//输出i号顶点并计数
for(p=G.vertices[i].firstarc;
p;
p=p—>
nextarc){
k=p—>
adivex;
//对i号顶点的每个邻接点的入度减1
if(!
(--indegree[k]))Push(S,k);
//若入度减为0,则入栈
}//while
if(count<
G.vexnum)returnERROR;
//该有向图有回路
elsereturnOK;
}//TopologicalSort
3.关键路径(AOE网):
在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度,路径长度最长的路径叫做关键路径(CriticalPath)。
3.1AOE网:
(Activityonedgenetwork)
AOE网示意图若在带权的有向图中,以顶点表示事件,以有向边表示活动,边上的权值表示活动的开销(如该活动持续的时间),则此带权的有向图称为AOE网。
3.2实际问题:
如果用AOE网来表示一项工程,那么,仅仅考虑各个子工程之间的优先关系还不够,更多的是关心整个工程完成的最短时间是多少;
哪些活动的延期将会影响整个工程的进度,而加速这些活动是否会提高整个工程的效率。
因此,通常在AOE网中列出完成预定工程计划所需要进行的活动,每个活动计划完成的时间,要发生哪些事件以及这些事件与活动之间的关系,从而可以确定该项工程是否可行,估算工程完成的时间以及确定哪些活动是影响工程进度的关键。
如图是一个假想的有11项活动的AOE-网:
其中有9个事件v1,v2,v3,…,v9,每个事件表示在它之前的活动已经完成,在它之后的活动可以开始。
如v1表示整个工程开始,v9表示整个工程结束,v5表示a4和a5已经完成,a7和a8可以开始。
与每个活动相联系的数是执行该活动所需的时间。
比如,活动a1需要6天,a2需要4天等。
和AOV-网不同,对AOE-网有待研究的问题是:
(1)完成整项工程至少需要多少时间?
(2)哪些活动是影响工程进度的关键?
3.3关键路径
由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。
路径长度最长的路径叫做关键路径(CriticalPath)。
AOE网有关的概念:
1)路径长度:
路径上各个活动的持续时间之和
2)完成工程的最短时间:
由于AOE网中有活动是并行进行的,所以完成工程的最短时间就是从开始点到完成点的最长路劲长度。
3)活动最早开始时间(earlisttime)(e(i)):
从开始点到顶点vi的最长路径称为事件vi的最早发生时间。
这个时间决定了以vi为尾的弧表示的活动的最早开始时间.
4)活动最晚开始时间(latesttime)(l(i)):
在不推迟整个工程完成的前提下,活动最迟开始的时间
5)完成活动的时间余量:
该活动的最迟开始时间减去最早开始时间
6)关键路径(criticalpath):
路径长度最长的路径称为关键路径
7)关键活动(criticalactivity):
关键路径上的活动称为关键活动,关键活动的特点是:
e(i)=l(i)分析关键路径的目的就是辨别在整个工程中哪些是关键活动,以便争取提高关键活动的工作效率,缩短整个工程的工期。
3.4解决方案:
由上分析可知,辨别关键活动就是要找e(i)=l(i)的活动。
为了求得AOE-网中活动的e(i)和l(i),首先求事件的最早发生时间ve(j)和最迟发生时间vl(j)。
如果活动ai由弧<
j,k>
表示,其持续时间记为dut(<
),则有如下关系:
e(i)=ve(j)
l(i)=vl(k)-dut(<
)
求ve(j)和vl(j)需分两步进行:
(1)从ve(0)开始向前递推
其中,T是所有以第j个顶点为头的弧的结合。
(2)从vl(n-1)=ve(n-1)起向后递推
其中,S是所有以第i个顶点为尾的弧的集合。
这两个递推公式的计算必须分别在拓扑有序和逆拓扑有序的前提下进行。
也就是说ve(j-1)必须在vj的所有前驱的最早发生时间求得之后才能确定,而vl(j-1)则必须在vj的所有后继的最迟发生时间求得之后才能确定。
因此,可以在拓扑排序的基础上计算ve(j-1)和vl(j-1)。
3.5关键路径的算法:
(1)输入e条弧<
j,k>
,建立AOE-网的存储结构;
(2)从源点v0出发,令ve[0]=0,按拓扑有序求其余各顶点的最早发生时间ve[i](1≤i≤n-1)。
如果得到的拓扑有序序列中顶点个数小于网中顶点数n,则说明网中存在环,不能求关键路径,算法终止;
否则执行步骤(3)。
(3)从汇点vn出发,令vl[n-1]=ve[n-1],按逆拓扑有序求其余各顶点的最迟发生时间vl[i](n-2≥i≥0);
(4)根据各顶点的ve和vl值,求每条弧s的最早开始时间e(s)和最迟开始时间l(s)。
若某条弧满足条件e(s)=l(s),则为关键活动。
先将拓扑排序算法:
TopologicalOrder()
CriticalPath便为求关键路径的算法:
34
35
36
37
38
StatusTopologicalOrder(ALGraphG,Stack&
T){
//有向网G采用邻接表存储结构,求各顶点事件的最早发生时间ve(全局变量)。
//T为拓扑序列顶点栈,s为零入度顶点栈。
若G无回路,返回G的一拓扑序列,函数值为OK,否则ERROR。
//对各顶点求入度indegree[0..vernum-1]
++i)
InitStack(T);
count=0;
ve[0..G.vexnum-1]=0;
//初始化
while(!
StackEmpty(S)){//j号顶点入T栈并计数
Pop(S,j);
Push(T,j);
++count;
for(p=G.vertices[j].firstarc;
p=p->
nextarc){
adjvex;
//对i号顶点的每个邻接点的入度减l
if(--indegree[k]==0)Push(S,k);
//若入度减为0,则入栈
if(ve[j]+*(p->
info)>
ve[k])ve[k]=ve[j]+*(p->
info);
}//for*(p->
info)=dut(<
)
G.