注塑模具外文翻译定稿设计论文Word格式.docx

上传人:b****5 文档编号:19460828 上传时间:2023-01-06 格式:DOCX 页数:42 大小:481.52KB
下载 相关 举报
注塑模具外文翻译定稿设计论文Word格式.docx_第1页
第1页 / 共42页
注塑模具外文翻译定稿设计论文Word格式.docx_第2页
第2页 / 共42页
注塑模具外文翻译定稿设计论文Word格式.docx_第3页
第3页 / 共42页
注塑模具外文翻译定稿设计论文Word格式.docx_第4页
第4页 / 共42页
注塑模具外文翻译定稿设计论文Word格式.docx_第5页
第5页 / 共42页
点击查看更多>>
下载资源
资源描述

注塑模具外文翻译定稿设计论文Word格式.docx

《注塑模具外文翻译定稿设计论文Word格式.docx》由会员分享,可在线阅读,更多相关《注塑模具外文翻译定稿设计论文Word格式.docx(42页珍藏版)》请在冰豆网上搜索。

注塑模具外文翻译定稿设计论文Word格式.docx

附录2

Integratedsimulationoftheinjectionmoldingprocesswithstereolithographymolds

AbstractFunctionalpartsareneededfordesignverificationtesting,fieldtrials,customerevaluation,andproductionplanning.Byeliminatingmultiplesteps,thecreationoftheinjectionmolddirectlybyarapidprototyping(RP)processofinjectionmoldingwithRPdemonstratedmanytimes.Whatismissingisthefundamentalunderstandingofandtheinjectionmoldingprocess.Inaddition,numericalsimulationtechniquesmolding.Butallcurrentsimulationpackagesforconventionalinjectionmoldingarenolongerapplicabletothisnewtypeofinjectionmolds,mainlybecausethepropertyofthemoldmaterialchangesgreatly.Inthispaper,anintegratedapproachtoaccomplishanumericalsimulationofinjectionmoldingintorapid-prototypedmoldsisestablishedandacorrespondingsimulationsystemisdeveloped.Comparisonswithexperimentalresultsareemployedforverification,whichshowthatthepresentschemeiswellsuitedtomoldingNumericalsimulationRapidprototyping

1Introduction

Ininjectionmolding,thepolymermeltattocreatethe

Inthispaper,basedontheaboveanalysis,anewsimulationsystemforRPmoldsisdeveloped.Theproposedsystemfocusesonpredictingpartdistortion,whichisdominatingdefectinRP-moldedparts.ThedevelopedsimulationcanbeappliedasanevaluationtoolforRPmolddesignandprocessoptimization.Oursimulationsystemisverifiedbyanexperimentalexample.

AlthoughmanymaterialsareavailableforuseinRPtechnologies,weconcentrateonusingstereolithography(SL),theoriginalRPtechnology,tocreatepolymermolds.TheSLprocessusesphotopolymerandlaserenergytobuildapartlayerbylayer.UsingSLtakesadvantageofboththecommercialdominanceofSLintheRPindustryandthesubsequentexpertisebasethatdevelopedforcreatingaccurate,andform-fitstudieswithverylimitedfunctionalapplications.However,thenewergenerationstereolithographicphotopolymersofthemoldingprocess

2.1Methodology

InordertosimulatetheuseofanSLmoldintheinjectionmoldingprocess,aniterativemethodisproposed.Differentsoftwaremodulesdevelopedandusedtoaccomplishthistask.ThemainassumptionisthattemperatureandloadboundaryconditionscausesignificantdistortionsintheSLmold.Thesimulationstepsareasfollows:

1Thepartgeometryismodeledasasolidmodel,whichistranslatedtoafilereadablebytheflowanalysispackage.

2Simulatethemold-fillingprocessofthemeltintoaphotopolymermold,whichwilloutputtheresultingtemperatureandpressureprofiles.

3Structuralanalysisisthenperformedonthephotopolymermoldmodelusingthethermalandloadboundaryconditionsobtainedfromthepreviousstep,whichcalculatesthedistortionthatthemoldundergoduringtheinjectionprocess.

4Ifthedistortionofthemoldconverges,movetothenextstep.Otherwise,thedistortedmoldcavityisthenmodeled(changesinthedimensionsofthecavityafterdistortion),andreturnstothesecondsteptosimulatethemeltinjectionintothedistortedmold.

5Theshrinkageandwarpagesimulationoftheinjectionmoldedpartisthenapplied,whichcalculatesthefinaldistortionsofthemoldedpart.

Inabovesimulationflow,therearethreebasicsimulationmodules.

2.2Fillingsimulationofthemelt

2.2.1Mathematicalmodeling

InordertosimulatetheuseofanSLmoldintheinjectionmoldingprocess,aniterativemethodisproposed.Differentsoftwaremodulesdevelopedandusedtoaccomplishthistask.ThemainassumptionisthattemperatureandloadboundaryconditionscausesignificantdistortionsintheSLmold.Thesimulationstepsareasfollows:

1.Thepartgeometryismodeledasasolidmodel,whichistranslatedtoafilereadablebytheflowanalysispackage.

2.Simulatethemold-fillingprocessofthemeltintoaphotopolymermold,whichwilloutputtheresultingtemperatureandpressureprofiles.

3.Structuralanalysisisthenperformedonthephotopolymermoldmodelusingthethermalandloadboundaryconditionsobtainedfromthepreviousstep,whichcalculatesthedistortionthatthemoldundergoduringtheinjectionprocess.

4.Ifthedistortionofthemoldconverges,movetothenextstep.Otherwise,thedistortedmoldcavityisthenmodeled(changesinthedimensionsofthecavityafterdistortion),andreturnstothesecondsteptosimulatethemeltinjectionintothedistortedmold.

5.Theshrinkageandwarpagesimulationoftheinjectionmoldedpartisthenapplied,whichcalculatesthefinaldistortionsofthemoldedpart.

Inabovesimulationflow,therearethreebasicsimulationmodules.

2.2Fillingsimulationofthemelt

2.2.1Mathematicalmodeling

Computersimulationtechniquespredictingfillingbehaviorinextremelycomplicatedgeometries.However,mostofthecurrentnumericalimplementationisbasedonawiththemiddleplanemodel.TheapplicationprocessofsimulationpackagesbasedonthismodelisillustratedinFig.2-1.However,unlikethesurfacesolidmodelinmold-designCADsystems,theso-calledmiddle-plane(asshowninFig.2-1b)isanimaginaryarbitraryplanargeometryatthemiddleofthecavityinthegap-wisedirection,whichshouldbringaboutgreatinconvenienceinapplications.Forexample,surfacemodelsarecommonlyusedincurrentRPsystems(generallySTLfileformat),sosecondarymodelingisunavoidablewhenusingsimulationpackagesbecausethemodelsintheRPandsimulationsystemsaredifferent.Consideringthesedefects,thesurfacemodelofthecavityisintroducedasdatumplanesinthesimulation,insteadofthemiddle-plane.

Accordingtothepreviousinvestigations[4–6],fillinggoverningequationsfortheflowandtemperaturefieldcanbewrittenas:

wherex,yaretheplanarcoordinatesinthemiddle-plane,andzisthegap-wisecoordinate;

u,v,warethevelocitycomponentsinthex,y,zdirections;

u,varetheaveragewhole-gapthicknesses;

andη,ρ,CP(T),K(T)representviscosity,density,specificwithmiddle-planemodel.aThe3-DsurfacemodelbThemiddle-planemodelcThemeshedmiddle-planemodeldThedisplayofthesimulationresult

Inaddition,boundaryconditionsinthegap-wisedirectioncanbedefinedas:

whereTWistheconstantwalltemperature(showninFig.2a).

CombiningEqs.1–4withEqs.5–6,itfollowsthatthedistributionsoftheu,v,T,Patzcoordinatesshouldbesymmetrical,withthemirroraxisbeingz=0,andconsequentlytheu,vaveragedinwholegapthickness.Basedonthischaracteristic,wecandividethewholecavityintotwoequalpartsinthegap-wisedirection,asdescribedbyPartIandPartIIinFig.2b.Atthesametime,triangularfiniteelementsaregeneratedinthesurface(s)ofthecavity(atz=0inFig.2b),insteadofthemiddle-plane(atz=0inFig.2a).Accordingly,finite-differenceincrementsinthegapwisedirectionareemployedonlyintheinsideofthesurface(s)(walltomiddlecenter-line),which,inFig.2b,meansfromz=0toz=b.Thisissingle-sidedinsteadoftwo-sidedwithrespecttothemiddle-plane(i.e.fromthemiddle-linetotwowalls).Inaddition,thecoordinatesystemischangedfromFig.2atoFig.2btoalterthefinite-elementfinite-differencescheme,asshowninFig.2b.Withtheaboveadjustment,governingequationsarestillEqs.1–4.However,theoriginalboundaryconditionsinthegapwisedirectionarerewrittenas:

Meanwhile,additionalboundaryconditionsmustbeemployedatz=binordertokeeptheflowsatthejunctureofthetwopartsatthesamesectioncoordinate[7]:

wheresubscriptsI,IIrepresenttheparametersofPartIandPartII,respectively,andCm-IandCm-IIindicatethemovingfreemelt-frontsofthesurfacesofthedividedtwopartsinthefillingstage.

Itshouldbenotedthat,unlikeconditionsEqs.7and8,ensuringconditionsEqs.9and10areupheldinnumericalimplementationsbecomesmoredifficultduetothefollowingreasons:

1.Thesurfacesatthesamesectionmeshedrespectively,whichleadstoadistinctivepatternoffiniteelementsatthesamesection.Thus,aninterpolationoperationshouldbeemployedforu,v,T,Pduringthecomparisonbetweenthetwopartsatthejuncture.

2.BecausethetwopartsinFig.2b)atthesamesection,itispossibletofortheformer,whereasassigningoperationforthelatter.

3.Itfollowsthatasmalldifferencebetweenthemelt-frontsispermissible.Thatallowancecanbeimplementedbytimeallowancecontrolorpreferablelocationallowancecontrolofthemelt-frontnodes.

4.Theboundariesoftheflowfieldexpandbyeachmelt-frontadvancement,soitisnecessarytochecktheconditionEq.10aftereachchangeinthemelt-front.

5.Inviewofabove-mentionedanalysis,thephysicalparametersatthenodesofthesamesectionshouldbecomparedandadjusted,sotheinformationdescribingfiniteelementsofthesamesectionshouldbepreparedbeforesimulation,thatis,thematchingoperationamongtheelementsshouldbepreformed.

Fig.2a,b.Illustrativeofboundaryconditionsinthegap-wisedirectionaofthemiddle-planemodelbofthesurfacemodel

2.2.2Numericalimplementation

Pressurefield.Inmodelingviscosityη,whichisafunctionofshearrate,temperatureandpressureofmelt,theshear-thinningbehaviorcanbewellrepresentedbyacross-typemodelsuchas:

wherencorrespondstothepower-lawindex,andτ∗characterizestheshearstresslevelofthetransitionregionbetweentheNewtonianandpower-lawasymptoticlimits.Intermsofan

Arrhenius-typetemperaturesensitivityandexponentialpressuredependence,η0(T,P)canberepresentedwithreasonableaccuracyasf

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 小学教育 > 小升初

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1