小学16年级数学公式及知识点汇总Word文档下载推荐.docx

上传人:b****5 文档编号:19450072 上传时间:2023-01-06 格式:DOCX 页数:8 大小:20.73KB
下载 相关 举报
小学16年级数学公式及知识点汇总Word文档下载推荐.docx_第1页
第1页 / 共8页
小学16年级数学公式及知识点汇总Word文档下载推荐.docx_第2页
第2页 / 共8页
小学16年级数学公式及知识点汇总Word文档下载推荐.docx_第3页
第3页 / 共8页
小学16年级数学公式及知识点汇总Word文档下载推荐.docx_第4页
第4页 / 共8页
小学16年级数学公式及知识点汇总Word文档下载推荐.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

小学16年级数学公式及知识点汇总Word文档下载推荐.docx

《小学16年级数学公式及知识点汇总Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《小学16年级数学公式及知识点汇总Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。

小学16年级数学公式及知识点汇总Word文档下载推荐.docx

体积=棱长×

棱长V=a×

3长方形C周长S面积a边长

周长=(长+宽×

2C=2(a+b面积=长×

宽S=ab

4长方体V:

体积s:

面积a:

长b:

宽h:

(1表面积=(长×

宽+长×

高+宽×

高×

2S=2(ab+ah+bh

(2体积=长×

宽×

高V=abh

5三角形s面积a底h高

面积=底×

高÷

2s=ah÷

2三角形高=面积×

底三角形底=面积×

6平行四边形s面积a底h高面积=底×

高s=ah

7梯形s面积a上底b下底h高

面积=(上底+下底×

2s=(a+b×

2

8圆形S面积C周长πd=直径r=半径

(1周长=直径×

π=2×

π×

半径C=πd=2πr

(2面积=半径×

半径×

n

9圆柱体v:

体积h:

高s;

底面积r:

底面半径c:

底面周长

(1侧面积=底面周长×

(2表面积=侧面积+底面积×

(3体积=底面积×

高(4体积=侧面积÷

半径10圆锥体v:

底面半径

体积=底面积×

3

和差问题的公式:

总数÷

总份数=平均数

(和+差÷

2=大数(和-差÷

2=小数

和倍问题

和÷

(倍数-1=小数小数×

倍数=大数

(或者和-小数=大数

差倍问题

差÷

(小数+差=大数植树问题

1非封闭线路上的植树问题主要可分为以下三种情形

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷

株距-1

全长=株距×

(株数-1株距=全长÷

(株数-1

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷

株距全长=株距×

株数株距

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷

株距-1全长=株距×

(株数+1株距=全长÷

(株数+1

2封闭线路上的植树问题的数量关系如下

株数=段数=全长÷

株数

株距=全长÷

盈亏问题

(盈+亏÷

两次分配量之差=参加分配的份数

(大盈-小盈÷

(大亏-小亏÷

相遇问题

相遇路程=速度和×

相遇时间

相遇时间=相遇路程÷

速度和

速度和=相遇路程÷

追及问题

追及距离=速度差×

追及时间

追及时间=追及距离÷

速度差

速度差=追及距离÷

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度÷

水流速度=(顺流速度-逆流速度÷

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷

溶液的重量×

100%=浓度

浓度=溶质的重量

浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷

成本×

100%=(售出价÷

成本-1×

100%涨跌金额=本金×

涨跌百分比

折扣=实际售价÷

原售价×

100%(折扣<

1

利息=本金×

利率×

时间

税后利息=本金×

时间×

(1-20%

棱长总和:

长方体棱长和=(长+宽+高正方体棱长和=棱长×

12熟记下列正反比例关系:

正比例关系:

正方形的周长与边长成正比例关系

长方形的周长与(长+宽成正比例关系

圆的周长与直径成正比例关系

圆的周长与半径成正比例关系

圆的面积与半径的平方成正比例关系

常用数量关系:

路程=速度×

时间速度=路程÷

时间时间=路程÷

速度工作总量=工作效率×

工作时间

工作效率=工作总量÷

工作时间=工作总量÷

工作效率

总价=单价×

数量单价=总价÷

数量数量=总价÷

单价总产量=单产量×

面积单产量=总产量÷

面积

面积=总产量÷

单产量

单位换算:

长度单位:

一公里=1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米面积单位:

1平方千米=100公顷1公顷=100公亩

1公亩=100平方米1平方千米=1000000平方米1公顷=10000平方米1平方米=100平方分米

1平方分米=100平方厘米1平方厘米=100平方毫米

体积单位:

1立方千米=1000000000立方米

1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1立方分米=1升

1立方厘米=1毫升1升=1000毫升

重量单位:

1吨=1000千克1千克=1000克

时间单位:

一世纪=100年一年=四季度一年=12月一年=365天(平年一年=366天(闰年

一季度=3个月一个月=3旬(上、中、下一个月=30天(小月一个月=31天(大月

一星期=7天一天=24小时一小时=60分一分=60秒一年中的大月:

一月、三月、五月、七月、八月、十月、十二月(七个月

一年中的小月:

四月、六月、九月、十一月(四个月

特殊分数值:

0.5=50%=0.25=25%=0.75=75%

0.2=20%=0.4=40%=0.6=60%

0.8=80%=0.125=12.5%=0.375=37.5%

0.625=62.5%=0.875=87.5%

算术

1、加法交换律:

两数相加交换加数的位置,和不变。

2.加法结合律:

a+b=b+a

3、乘法交换律:

b=b×

a

4、乘法结合律:

c=a×

(b×

c

5、乘法分配律:

b+a×

b+c

6、除法的性质:

c=a÷

7、除法的性质:

在除法里,被除数和除数同时扩大(或缩小相同的倍数,商不变。

O除以任何不是O的数都得O。

简便乘法:

被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

8、有余数的除法:

被除数=商×

除数+余数

方程、代数与等式

等式:

等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:

等式两边同时乘以(或除以一个相同的数,等式仍然成立。

方程式:

含有未知数的等式叫方程式。

一元一次方程式:

含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。

即例出代有χ的算式并计算。

代数:

代数就是用字母代替数。

代数式:

用字母表示的式子叫做代数式。

如:

3x=ab+c分数

分数:

把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

分数大小的比较:

同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;

若分子相同,分母大的反而小。

分数的加减法则:

同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

分数的加、减法则:

异分母的分数相加减,先通分,然后再加减。

倒数的概念:

1.如果两个数乘积是1,我们称一个是另一个的倒数。

这两个数互为倒数。

1的倒数是1,0没有倒数。

分数除以整数(0除外,等于分数乘以这个整数的倒数。

分数的基本性质:

分数的分子和分母同时乘以或除以同一个数(0除外,分数的大小不变。

分数的除法则:

除以一个数(0除外,等于乘这个数的倒数。

真分数:

分子比分母小的分数叫做真分数。

假分数:

分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

带分数:

把假分数写成整数和真分数的形式,叫做带分数。

数量关系计算公式

1、单价×

数量=总价2、单产量×

数量=总产量

3、速度×

时间=路程4、工效×

时间=工作总量

加数+加数=和一个加数=和+另一个加数

被减数-减数=差减数=被减数-差

被减数=减数+差因数×

因数=积

一个因数=积÷

另一个因数被除数÷

除数=商

除数=被除数÷

商被除数=商×

除数

什么叫比:

两个数相除就叫做两个数的比。

如:

5或3:

6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外,比值不变。

什么叫比例:

表示两个比相等的式子叫做比例。

如3:

6=9:

18比例的基本性质:

在比例里,两外项之积等于两内项之积。

解比例:

求比例中的未知项,叫做解比例。

χ=9:

18正比例:

两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

y/x=k(k一定或kx=y

反比例:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

y=k(k

一定或k/x=y

百分数

百分数:

表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。

其实,把小数化成百分数,只要把这个小数乘以100%就行了。

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数,再把小数化成百分数。

其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。

把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

要学会把小数化成分数和把分数化成小数的换算。

倍数与约数

最大公约数:

几个数公有的约数,叫做这几个数的公约数。

公因数有有限个。

其中最大的一个叫做这几个数的最大公约数。

最小公倍数:

几个数公有的倍数,叫做这几个数的公倍数。

公倍数有无限个。

其中最小的一个叫做这几个数的最小公倍数。

互质数:

公约数只有1的两个数,叫做互质数。

相临的两个数一定互质。

两个连续奇数一定互质。

1和任何数互质。

通分:

把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数

约分:

把一个分数的分子、分母同时除以公约数,分数值不变,

这个过程叫约分。

最简分数:

分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化成最简分数。

质数(素数):

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

整除如果c|a,c|b,那么c|(a±

b如果,那么b|a,c|a如果b|a,c|a,且(b,c=1,那么bc|a如果c|b,b|a,那么c|a合数:

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

质因数:

如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

分解质因数:

把一个合数用质因数相成的方式表示出来叫做分解质因数。

倍数特征:

2的倍数的特征:

各位是0,2,4,6,8。

3(或9)的倍数的特征:

各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:

各位是0,5。

4(或25)的倍数的特征:

末2位是4(或25)的倍数。

8(或125)的倍数的特征:

末3位是8(或125)的倍数。

7(11或13)的倍数的特征:

末3位与其余各位之差(大-小)是7(11或13)的倍数。

11

17(或59)的倍数的特征:

末3位与其余各位3倍之差(大小)是17(或59)的倍数。

19(或53)的倍数的特征:

末3位与其余各位7倍之差(大小)是19(或53)的倍数。

23(或29)的倍数的特征:

末4位与其余各位5倍之差(大-小)是23(或29)的倍数。

倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。

互质关系的两个数,最大公约数为1,最小公倍数为乘积。

两个数分别除以他们的最大公约数,所得商互质。

两个数的与最小公倍数的乘积等于这两个数的乘积。

两个数的公约数一定是这两个数最大公约数的约数。

1既不是质数也不是合数。

用6去除大于3的质数,结果一定是1或5。

奇数与偶数偶数:

个位是0,2,4,6,8的数。

奇数:

个位不是0,2,4,6,8的数。

偶数±

偶数=偶数奇数±

奇数=奇数奇数±

偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×

偶数=偶数奇数×

奇数=奇数奇数×

偶数=偶数相临两个自然数之和为奇数,相临自然数之积为偶数。

如果乘式中有一个数为偶数,那么乘积一定是偶数。

奇数≠偶数12

小数自然数:

用来表示物体个数的整数,叫做自然数。

0也是自然数。

纯小数:

个位是0的小数。

带小数:

各位大于0的小数。

循环小数:

一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。

如3.141414不循环小数:

一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。

如3.141592654无限循环小数:

一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。

如3.141414……无限不循环小数:

一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

如3.141592654……利润利息=本金×

利率×

时间(时间一般以年或月为单位,应与利率的单位相对应)利率:

利息与本金的比值叫做利率。

一年的利息与本金的比值叫做年利率。

一月的利息与本金的比值叫做月利率。

内角和边数—2乘18013

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 成人教育 > 远程网络教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1