全日制义务教育数学课程标准修改稿修改说明Word文档下载推荐.docx
《全日制义务教育数学课程标准修改稿修改说明Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《全日制义务教育数学课程标准修改稿修改说明Word文档下载推荐.docx(20页珍藏版)》请在冰豆网上搜索。
能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等
了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)
知道给定不共线三点的坐标可以确定一个二次函数
3、减少了部分内容
了解有效数字的概念。
能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题。
图形与几何
1、内容的结构的调整:
《标准(实验稿)》的“空间与图形”分为四个部分:
第三学段为
(1)图形的认识;
(2)图形与变换;
(3)图形与坐标;
(4)图形与证明。
《标准(修改稿)》的“图形与几何”,
第三学段分为三个部分:
(1)图形的性质;
(2)图形的运动;
(3)图形与坐标。
其中,
第
(1)部分大体整合了《标准(实验稿)》的第
(1)、(4)部分的内容,以利于在探索、发现、确认、证明图形性质过程的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系;
体现《标准(修改稿)》在总体目标中提出的增强学生“发现和提出问题,分析和解决问题”的能力的要求。
第
(2)部分除了《标准(实验稿)》第
(2)部分的图形的轴对称、旋转、平移、相似外,还包括了图形的投影。
这部分内容强调了图形的运动是研究图形性质的一种有效方法。
第(3)部分包括两部分内容——坐标与图形的位置、坐标与图形的运动,比《标准(实验稿)》的第(3)部分内容有所增加,要求也更加具体、明确。
2、主要内容的修改
(1)对“基本事实”(《标准(修改稿)》中不再使用“公理”这个词),在既考虑其自身的体系,又关注学生的实际情况的基础上,《标准(修改稿)》明确了9条基本事实。
但是,“两直线平行,同位角相等”不再作为基本事实,而作为定理加以证明。
(2)为适当加强推理,《标准(修改稿)》增加了下列定理的证明:
相似三角形的判定定理和性质定理,垂径定理,圆周角定理,切线长定理等。
但是,不要求运用这些定理证明其他命题。
(3)对于“证明”,不仅要求“知道证明的意义和必要性,知道证明要合乎逻辑”,而且要求“知道证明的过程可以有不同的表达形式”。
强调证明除了用简化了的三段论证表达外,还可以采用其他符合学生思维过程的表达形式。
(4)删去了一些内容或降低了一些内容的要求:
比如,删去了有关等腰梯形的内容,降低了关于视图与投影的要求……等。
统计与概率
1.统计
与《标准》相比,《标准修改稿》对统计内容做了适当调整,使三个学段统计内容学习的层次性方面更加明确。
主要变化如下:
第三学段与《标准》相比,强调了对“随机”的体会。
比如,增加了“通过案例了解简单随机抽样”、“通过表格、折线图等,了解随机现象的变化趋势”。
(4)加强体会数据的随机性
实际上,体会数据的随机性是《标准修改稿》的一个重要特点,也是一个重要变化。
在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准修改稿》希望通过数据使学生体会随机思想。
这种变化从“数据分析观念”核心词的表述,以及案例21、案例43、案例73中也可以看到。
2.概率
与《标准》相比,《标准修改稿》的主要变化如下:
明确指出所涉及的随机现象都基于简单随机事件:
所有可能发生的结果是有限的、每个结果发生的可能性是相同的。
在第三学段,学生通过列出简单随机现象所有可能的结果、以及指定事件发生的所有可能结果,来了解随机现象发生的概率。
增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。
综合与实践
“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。
针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。
“综合与实践”应当保证每学期至少一次。
它可以在课堂上完成,也可以在课外完成,还可以课内外相结合。
在第三学段中,学生将在教师的指导下,将所学过的知识有机地结合,增强对知识的理解;
注意与实际问题有机地结合,进一步获得数学活动的经验,增强应用意识。
具体目标
1.通过对有关问题的探讨,了解所学过的数与代数、图形与几何、统计与概率知识之间的关联。
2.初步获得发现问题和提出问题的经验。
3.结合实际背景,在给定目标下,设计解决问题的方案,进一步体验分析问题和解决问题的过程,发展相应的能力。
《全日制义务教育数学课程标准(修改稿)》
设计理念
数学是研究数量关系和空间形式的科学。
数学与人类的活动息息相关,特别是随着计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民所必备的基本素养。
数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识与技能,一方面要充分发挥数学在培养人的科学推理和创新思维方面的功能。
义务教育阶段的数学课程具有公共基础的地位,要着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。
课程设计要满足学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识和基本技能,发展学生抽象思维和推理能力,培养应用意识和创新意识,在情感、态度与价值观等方面都要得到发展;
要符合数学科学本身的特点、体现数学科学的精神实质;
要符合学生的认知规律和心理特征、有利于激发学生的学习兴趣;
要在呈现作为知识与技能的数学结果的同时,重视学生已有的经验,让学生体验从实际背景中抽象出数学问题、构建数学模型、得到结果、解决问题的过程。
为此,制定了《标准》的基本理念与设计思路。
基本理念
数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。
义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律。
它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。
课程内容要贴近学生的生活,有利于学生经验、思考与探索。
内容的组织要处理好过程与结果的关系,直观与抽象的关系,生活化、情境化与知识系统性的关系。
课程内容的呈现应注意层次化和多样化,以满足学生的不同学习需求。
数学活动是师生共同参与、交往互动的过程。
有效的数学教学活动是教师教与学生学的统一,学生是数学学习的主体,教师是数学学习的组织者与引导者。
数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考;
要注重培养学生良好的学习习惯、掌握有效的学习方法。
学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。
教师教学应该以学生的认知发展水平和益友的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。
要处理好教师讲授和学生自主学习的关系,通过有效的措施,启发学生思考,引导学生自主探索,鼓励学生合作交流,使学生真正理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得广泛的数学活动经验。
学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学。
应建立评价目标多元、评价方法多样的评价体系。
评价要关注学生学习的结果,也要关注学习的过程;
要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我,尽力信心。
信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。
数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的有机结合。
要充分考虑计算器、计算机对数学学习内容和方式的影响以及所具有的优势,大力开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。
关于目标
《标准》提出义务教育阶段数学课程的总体目标和分学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面具体阐述。
《标准》用了“了解(认识)、理解、掌握、运用”等认知目标动词表述知识技能目标的不同水平。
一句“基本理念”,数学学习必须注重过程,《标准》使用“经历(感受)、体验(体会)、探索”等认知过程动词表述学习活动的不同程度。
使用这些动词进行表述是为了更准确地刻画上述四个方面的具体目标。
在《标准》中,这些动词的具体含义如下。
了解(认识):
从具体事例中知道或举例说明对象的有关特征;
根据对象的特征,从具体情景中辨认或者举例说明对象。
理解:
描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系。
掌握:
在理解的基础上,把对象用于新的情境。
运用:
用已掌握的对象,选择或创造适当的方法。
经历(感受):
在特定的数学活动中,获得一些感性认识。
体验(体会):
参与特定的数学活动,认识或验证对象的特征,获得经验。
探索:
独立或与他人合作参与特定的数学活动,发现对象的特征及其与相关对象的区别和联系,获得理性认识。
关于学习内容
在各个教学段中,《标准》安排了四个方面的内容:
“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”。
1.数与代数
“数与代数”的主要内容有:
数的认识,数的表示,数的大小,数的运算,数量的估计;
字母表示数,代数式及其运算;
方程、方程组、不等式、函数等。
在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力,树立模型思想。
数感主要是指关于数与数量表示、数量大小比较、数量和运算结果的估计等方面的直观感觉。
建立“数感”有助于学生理解现实生活中数的意义,理解或表述具体情景中的数量关系。
符号意识主要指能够理解并且运用符号表示数、数量关系和变化规律;
知道使用符号可以进行一般性的运算和推理。
建立“符号意识”有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
运算是“数与代数”的重要内容,运算是基于法则进行的,通常运算满足一定的运算律。
学习这些内容有助于理解运算律,培养运算能力。
模型也是“数与代数”的重要内容,方程、方程组、不等式、函数等都是基本的数学模型。
从现实生活或者具体情境中抽象出数学问题,是建立模型的出发点;
用符号表示数量关系和变化规律,是建立模型的过程;
求出模型的结果并讨论结果的意义,是求解模型的过程。
这些内容有助于培养学生的学习兴趣和应用意识,体会数学建模的过程,树立模型思想。
2.图形与几何
“图形与几何”主要内容有:
空间和平面的基本图形,图形的性质和分类;
平面图形基本性质的证明;
图形的平移、旋转、轴对称、相似和投影;
运用坐标描述图形的位置和图形的运动。
在“图形与几何”的学习中,应帮助学生建立空间观念。
空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;
能够想象出空间物体的方位和相互之间的位置关系;
根据语言描述或通过想象画出图形等。
直观与推理是“图形与几何”学习中的两个重要方面。
几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。
在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。
几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿整个数学学习中。
推理是数学的基本思维方式,是人们学习和生活中经常使用的思维方式,与直观一样,推理也贯穿在整个数学学习中。
推力一般包括合情推理和演绎推理。
合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。
演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。
在解决问题的过程中,合情推力有助于探索解决问题的思路、发现结论;
演绎推理用于验证结论的正确性。
3.统计与概率
“统计与概率”主要内容有:
收集、整理和描述数据,包括简单抽样、记录调查数据、描绘统计图表等;
处理数据,包括计算平均数、中位数、众数、极差、方差等;
从数据中提取信息并进行简单的判断。
简单随机事件及其发生的概率。
在“统计与概率”中,帮助学生建立数据分析的观念是重要的。
数据分析包括:
了解在现实生活中有许多问题应当先做调查研究、收集数据,通过分析作出判断,体会数据中是蕴涵着信息的;
体验数据是随机的和有规律的,一方面对于同样的事情每次收集到的数据可能会是不同的,另一方面只要有足够的数据就可能从中发现规律;
了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法。
在概率的学习中,所涉及的随机现象都基于简单事件:
“统计与概率”的内容与现实生活联系密切,必须结合具体案例组织教学。
4.综合与实践
“综合与实践”是以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
针对问题情景,学生借助所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间及其他学科的联系,激发学生学习数学的兴趣,加深学生对所学数学内容的理解。
这种类型的课程对于培养学生的抽象能力和逻辑思维能力、对于培养学生的创新意识和应用能力是有益处的,还有利于培养学生的合作精神。
合理地设计课程内容以及教学方法是达到教学目标的关键,既要考虑学生的直接经验、能够启发学生思考,也要考虑问题的数学实质、培养学生的数学素养。
这种类型的课程对教师是一种挑战,教师应努力把握住问题的本质,能够引导学生思考,同时,教师又应努力帮助学生整理清楚自己的思路,指导学生以不同的形式展示自己的成果或报告自己的工作。
这种类型的课程应当贯彻“少而精”的原则,保证每学期至少一次。
它可以在课堂上完成,也可以将课内外相结合。
总体目标
通过义务教育阶段的数学学习,学生能够:
1、获得适应社会生活和进一步发展所必须的数学的基本知识、基本技能、基本思想、基本活动经验。
2、体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现问题和提出问题的能力、分析问题和解决问题的能力。
3、了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。
“总体目标”具体阐述如下:
知
识
技
能
*经历数与代数的抽象运算与建模等过程,掌握数与代数的基础知识和基本技能。
*经历图形的抽象、分类、性质探讨、运动、位置确定等过程,掌握图形与几何的基础知识和基本技能。
*经历在实际问题中收集和处理数据、利用数据分析问题、获得信息的过程,掌握统计与概率的基础知识和基本技能。
*参与综合实践活动,积累综合运用数学知识、技能和方法解决简单实际问题的数学活动经验。
数
学
思
考
*体会代数表示运算和几何直观等方面的作用,初步建立数感、符号意识和空间观念,发展形象思维和抽象思维。
*了解数据和随机现象,体会统计方法的意义,发展数据分析和随机观念。
*在参与观察、实验、蔡祥、郑明、综合实践等数学活动中,发展合情推理和演绎推理能力,清晰地表达自己的想法。
*学会独立思考,体会数学的基本思想和思维方式。
问
题
解
决
*初步学会从数学的角度发现问题和提出问题,综合运用数学知识和其他知识解决简单的数学问题,发展应用意识和实践能力。
*获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。
*学会与他人合作、交流。
*初步形成评价与反思的意识。
情
感
态
度
*积极参与数学活动,对数学有好奇心和求知欲。
*体验获得成功的乐趣,锻炼克服困难的意志,建立学好数学的自信心。
*体会数学的特点,了解数学的价值。
*养成勇于质疑的习惯,形成实事求是的态度。
总体目标的四个方面,不是互相独立和割裂的,而是一个密切联系、相互交融的有机整体。
课程组织和教学活动中,应同时兼顾四个方面的目标。
这些目标的实现,使学生受到良好数学教育的标志,它对学生的全面、持续、和谐发展,有着重要的意义。
数学思考、问题解决、情感态度的发展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现。
学段目标
第三学段(7~9年级)
知识技能
1、体验从具体情境中抽象出数学符号的过程;
理解有理数、实数、代数式、方程、不等式、函数。
掌握必要的运算(包括估算)技能;
探索具体问题中的数量关系和变化规律,掌握用代数、方程、不等式进行表述的方式。
2、探索并理解图形的基本性质、位置关系和平移、旋转、轴对称等。
掌握三角形、四边形的基本性质(包括判定),掌握基本的证明方法。
3、体验数据收集、处理、分析和推断过程,理解抽样方法;
体验用样本估计总体的过程,理解频率。
理解计算简单事件概率的方法。
数学思考
1、能从具体情境中抽象出数量关系,并且能用代数式、方程、不等式、函数等表述,体会模型的思想。
2、在研究图形运动现象、确定物体位置的过程中,进一步发展空间观念,初步建立几何直观。
3、初步建立数据观念,理解通过数据进行统计推断的合理性。
4、初步形成通过实例探索数学结论的思维方式。
在多种形式的数学活动中,发展合情推理与演绎推理的能力。
问题解决
1、尝试在具体的情境中,从数学的角度发现问题和提出问题。
2、尝试从不同角度寻求分析问题和解决问题的方法,了解不同方法的差异。
3、在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。
4、在表述自己的想法时,能针对他人所提的问题进行反思。
情感态度
1、愿意谈论某些数学话题,能够在数学学习活动中发挥一定的作用。
2、体验独立克服困难、解决数学过程的过程,有克服困难的勇气,具备学好数学的信心。
3、在运用数学表达现实、解决问题的过程中,认识数学抽象、严谨和应用广泛的特点,体会数学的价值。
4、勇于发表自己的观点,质疑他人的观点,养成良好的学习习惯。
《全日制义务教育数学课程标准(修改稿)》内容标准
第三学段(7—9年级)
一、数与代数
(一)数与式
1.有理数
(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法(绝对值符号内不含字母)。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
(4)理解有理数的运算律,能运用运算律简化运算。
(5)能运用有理数的运算解决简单的问题(参见例1)。
2.实数
(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。
(3)了解无理数和实数的概念,了解实数与数轴上的点一一对应。
会求实数的相反数与绝对值。
(4)能用有理数估计一个无理数的大致范围。
(5)了解近似数的概念;
在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。
(6)了解二次根式、最简二次根式的概念,了解二次根式加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算。
3.代数式
(1)在现实情境中,借助代数式进一步理解用字母表示数的意义(参见例3)。
(2)能分析简单问题的数量关系,并用代数式表示(参见例4)。
(3)理解简单的数学公式,会代入具体的数值进行计算。
(4)会求代数式的值;
能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
4.整式与分式
(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。
(2)了解整式的概念,掌握合并同类项和去括号的法则,会进行简单的整式加法和减法运算;
会进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
(3)会推导乘法公式:
(a+b)(a-b)=a2-b2;
(a+b)2=a2+2ab+b2,了解公式的几何背景,并能进行简单计算。
(4)会用提公因式法、公式法(直接利用公式不超过二次)进行因式分解。
(5)了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分;
会进行简单的分式加、减、乘、除运算。
(二)方程与不等式
1.方程与方程组
(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型
(2)经历心算、画图或利用计算器等估计方程解的过程。
(3)掌握等式的基本性质。
(4)会解一元一次方程、可化为一元一次方程的分式方程。
(5)掌握代入消元法和加减消元法,会解简单的二元一次方程组和三元一次方程组。
(6)理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程。
(7)能用一元二次方程的根的判别式判别方程是否有实根和两个实根是否相等。
(8)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。
(9)能根据具体问题的实际意义,检验方程的解是否合理。
2.不等式与不等式组
(1)结合具体问题中的大小关系.了解不等式的意义,并探索不等式的基本性质)。
(2)会解简单的一元一次不等式,并能在数轴上表示出解集。
会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
(三)函数
1.函数
(1)探索