光合作用论文.docx

上传人:b****3 文档编号:1935093 上传时间:2022-10-25 格式:DOCX 页数:9 大小:58.70KB
下载 相关 举报
光合作用论文.docx_第1页
第1页 / 共9页
光合作用论文.docx_第2页
第2页 / 共9页
光合作用论文.docx_第3页
第3页 / 共9页
光合作用论文.docx_第4页
第4页 / 共9页
光合作用论文.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

光合作用论文.docx

《光合作用论文.docx》由会员分享,可在线阅读,更多相关《光合作用论文.docx(9页珍藏版)》请在冰豆网上搜索。

光合作用论文.docx

光合作用论文

光合作用论文

植物生理学研究进展论文

 

题目光合作用的原理、过程及应用

学院

专业班级

学生姓名

指导老师

 

撰写日期:

2015年6月20日

绿素产生化学作用)

(化学反应式12H2O+6CO2→C6H12O6(葡萄糖)+6O2+6H2O标条件是酶和光照,下面是叶绿体)

H2O→2H+2e-+1/2O2(水的光解)

NADP++2e-+H+→NADPH(递氢)

ADP+Pi+能量→ATP(递能)

CO2+C5化合物→2C3化合物(二氧化碳的固定)

2C3化合物+4NADPH→C5糖(有机物的生成或称为C3的还原)

C3(一部分)→C5化合物(C3再生C5)

C3(一部分)→储能物质(如葡萄糖、蔗糖、淀粉,有的还生成脂肪)

ATP→ADP+Pi+能量(耗能)

C3:

某些3碳化合物C5:

某些5碳化合物

能量转化过程:

光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能

注:

因为反应中心吸收了特定波长的光后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上缺的。

产生ATP与NADPH分子,这个过程称为电子传递链(ElectronTransportChain)

电子传递链分为循环和非循环。

非循环电子传递链从光系统II出发,会裂解水,释放出氧气,生产ATP与NADPH.

循环电子传递链不会产生氧气,因为电子来源并非裂解水。

最后会生成ATP.

由光合作用的简要过程可见,从叶绿素a吸收光能开始,就发生了电子的移动,形成了电子传递链,有了电子传递链,才能使得ATP合成酶将ADP和磷酸合成ATP.因此,它的能量转化过程为:

光能→电能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(淀粉等糖类的合成)

注意:

光反应只有在光照条件下进行,而只要在满足碳反应条件的情况下碳反应都可以进行。

也就是说碳反应不一定要在黑暗条件下进行。

反应阶段

光合作用可分为光反应和碳反应(旧称暗反应)两个阶段。

光反应

条件:

光照、光合色素、光反应酶。

场所:

叶绿体的类囊体薄膜。

(蓝细菌等微生物的反应场所在细胞膜)(色素所在地)

光合作用的反应:

(原料)光

(产物)水-----------→氧气(光和叶绿体是条件)+能量(储存在ATP中)+还原氢(NADPH)

叶绿体

过程:

①水的光解:

2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。

②ATP的合成:

ADP+Pi+能量→ATP(在酶的催化下)。

影响因素:

光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。

意义:

①光解水,产生氧气。

②将光能转变成化学能,产生ATP,为碳反应提供能量。

③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ)。

碳反应

条件:

多种酶。

场所:

叶绿体基质。

过程:

①碳的固定:

C5+CO2→2C3(在酶的催化下)

②C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)

影响因素:

温度、CO2浓度

光合色素

类囊体中含两类色素:

叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:

1,chla与chlb也约为3:

1,在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,绿叶是光合作用的场所

如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。

叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。

类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。

全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。

类胡萝卜素与叶黄素能对叶绿素a,b起一定的保护作用。

几类色素的吸收光谱不同,叶绿素a,b吸收红,橙,蓝,紫光,类胡萝卜素吸收蓝紫光,吸收率最低的为绿光。

特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。

电子传递链组分

集光复合体

由大约200个叶绿素分子和一些肽链构成。

大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。

因此这些色素被称为天线色素。

叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。

另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。

光系统Ⅰ(PSI)

能被波长700nm的光激发,又称P700。

包含多条肽链,位于基粒与基质接触区的基质类囊体膜中。

由集光复合体Ⅰ和作用中心构成。

结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外,其它叶绿素都是天线色素。

三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。

光系统Ⅱ(PSⅡ)

吸收高峰为波长680nm处,又称P680。

至少包括12条多肽链。

位于基粒与基质非接触区域的类囊体膜上。

包括一个集光复合体(light-hawestingcomnplexⅡ,LHCⅡ)、一个反应中心和一个含锰原子的放氧的复合体(oxygenevolvingcomplex)。

D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。

细胞色素b6/f复合体

可能以二聚体形式存在,每个单体含有四个不同的亚基。

细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。

非循环电子传递链过程大致如下:

光系统II→初级接受者(Primaryacceptor)→质粒醌(Pq)→细胞色素复合体(CytochromeComplex)→质粒蓝素(含铜蛋白质,Pc)→光系统1→初级接受者→铁氧化还原蛋白(Fd)→NADP+还原酶(NADP+reductase)

非循环电子传递链从光系统II出发,会裂解水,释出氧气,生产ATP与NADPH。

循环电子传递链的过程如下:

光系统1→初级接受者(Primaryacceptor)→铁氧化还原蛋白(Fd)→细胞色素复合体(CytochromeComplex)→质粒蓝素(含铜蛋白质)(Pc)→光系统1

循环电子传递链不会产生氧气,因为电子来源并非裂解水。

最后会生产出ATP。

非循环电子传递链中,细胞色素复合体会将氢离子打到类囊体(Thylakoid)里面。

高浓度的氢离子会顺着高浓度往低浓度的地方流这个趋势,像类囊体外扩散。

但是类囊体膜是双层磷脂膜(Phospholipiddilayer),对于氢离子移动的阻隔很大,它只能通过一种叫做ATP合成酶(ATPSynthase)的通道往外走。

途中正似水坝里的水一般,释放它的位能。

经过ATP合成酶时会提供能量、改变它的形状,使得ATP合成酶将ADP和磷酸合成ATP。

NADPH的合成没有如此戏剧化,就是把送来的电子与原本存在于基质内的氢离子与NADP+合成而已。

值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此当ATP不足时,相对来说会造成NADPH的累积,会刺激循环式电子流之进行。

光合磷酸化

P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;

光合作用电子传递链

Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。

2H2O→O2+2(2H+)+4e-

在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。

质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。

电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统Ⅱ。

P700被光能激发后释放出来的高能电子沿着A0→A1→4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。

最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。

失去电子的P700从PC处获取电子而还原。

以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。

一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原

NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。

ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。

CF1同样由5种亚基组成α3β3γδε的结构。

CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。

C3类植物

二战之后,美国加州大学伯利克分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。

此时C14示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。

他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。

接着他们提取到溶液里的分子。

然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。

C4类植物

在20世纪60年代,澳大利亚科学家哈奇和斯莱克发现玉米、甘蔗等热带绿色植物,除了和其他绿色植物一样具有卡尔文循环外,CO2首先通过一条特别的途径被固定。

C3和C4植物叶片结构比较

这条途径也被称为哈奇-斯莱克途径(Hatch-Slack途径),又称四碳二羧酸途径C4植物主要是那些生活在干旱热带地区的植物。

在这种环境中,植物若长时间开放气孔吸收二氧化碳,会导致水分通过蒸腾作用过快的流失。

所以,植物只能短时间开放气孔,二氧化碳的摄入量必然少。

植物必须利用这少量的二氧化碳进行光合作用,合成自身生长所需的物质。

在C4类植物叶片维管束的周围,有维管束鞘围绕,这些维管束鞘细胞含有叶绿体,但里面并无基粒或发育不良。

在这里,主要进行卡尔文循环。

其叶肉细胞中,含有独特的酶,即磷酸烯醇式丙酮酸碳羧化酶,使得二氧化碳先被一种三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸,这也是该暗反应类型名称的由来。

这草酰乙酸在转变为苹果酸盐后,进入维管束鞘,就会分解释放二氧化碳和一分子丙酮酸。

二氧化碳进入卡尔文循环,后同C3进程。

而丙酮酸则会被再次合成磷酸烯醇式丙酮酸,此过程消耗ATP。

也就是说,C4植物可以在夜晚或气温较低时开放气孔吸收CO2并合成C4化合物,再在白天有阳光时借助C4化合物提供的CO2合成有机物。

该类型的优点是,二氧化碳固定效率比C3高很多,有利于植物在干旱环境生长。

C3植物行光合作用所得的淀粉会贮存在叶肉细胞中,因为这是卡尔文循环的场所,而维管束鞘细胞则不含叶绿体。

而C4植物的淀粉将会贮存于维管束鞘细胞内,因为C4植物的卡尔文循环是在此发生的。

景天酸代谢植物

景天酸代谢(crassulaceanacidmetabolism,CAM):

如果说C4植物是空间上错开二氧化碳的固定和卡尔文循环的话,那景天酸循环就是时间上错开这两者。

行使这一途径的植物,是那些有着膨大肉质叶子的植物,如凤梨。

这些植

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1