中央空调恒温系统解决方案Word格式文档下载.docx
《中央空调恒温系统解决方案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《中央空调恒温系统解决方案Word格式文档下载.docx(8页珍藏版)》请在冰豆网上搜索。
一般传统的控制上,是以变频器对送风箱马达做变频(变转速)的控制,以控制出风量的大小。
而单使用风量的调节是无法达到恒温的要求,只能适时的减低转速以减少冷房出力及降低马达本身电能的浪费。
因此恒温控制上,则必需同时把冰水阀门的开度一起纳入控制架构中以适时的调节冰水的流量,此时再配合温控器上的PID运算即可对马达转速及冰水阀的开度做相互配合而完成定温控制的目地。
台达机电至今已经能为客户提供PLC控制器、温度控制器、计数器、人机界面、变频驱动器、伺服驱动器、数控系统等一系列产品,可以向客户提供完善可靠的机电一体化解决方案。
本文基于台达机电产品在中央空调恒温系统上的应用,实现了空调恒温系统的良好控制,效果良好,得到业界同行认可。
2控制系统
2.1系统框图
以下是以单一区域(一个楼层或独立会议室)做恒温控制,并且使用最经济的台达产品架构即可达到人性化的操作接口。
系统框架图如图1所示:
图1系统控制框架图
系统通过上位台达HMI进行控制系统的监控,通过RS485协议连接台达变频器和温控器;
前者用于驱动送风量,后者用于控制三通冰水阀;
这样通过送风量和冰水阀的调节就可以实现对中央空调恒温系统的有效控制。
2.2系统效益说明
在一般的传统控制系统中,因马达送风为定频出力,会造成环温已到达设定温时,仍输出过多冷房能力,造成环温太低以致人员的舒适度不佳,也造成能源的浪费。
配合台达HMI及温控器的使用,即可提供一个方便的使用接口来精确设定所要的室温(达小数下一位),并且藉由温控器PID运算功能,适度开启阀门的开度及调节送风量达到恒温的要求,也可以减少冰水消耗以节省冰水机的电力耗能。
因此藉由小额的工程及材料费用即可达到舒适环境及每日节能的效果。
2.3系统改造效果评估
于理论的学理上,马达的转速和耗能为3次方关系,因此当马达的频率由60Hz降为30Hz时,此时的耗能只需1/8。
但由于空调环境中有人员产生CO2的问题,因此经验上通常最低的运转频率为不低于30Hz,以达到空气正常循环的要求。
而冰水阀的开度调整可适时调节冰水流量,若是系统中有多部冰水机供应冰水,此时也可利用PLC程序判断是否要将部份冰水机卸载以减少多部冰水机连转所造成的能源浪费。
2.4系统设备配置
系统配置如表1所示。
表1系统设备配置
2.5系统配线图
系统接线图如图2和图3所示。
图2HMI接线图
图3温控器接线图
3程序及操作说明
由于此系统中未使用到PLC,因此一些简易的判断程序,将利用HMI上的宏来实现,以下将说明画面架构及内部中所编写的宏程序。
(变频器站号为1,温控器站号为3)
HMI画面如图4所示:
图4HMI画面及说明
宏程序:
宏一共分为3部份,(clock宏、按钮on/off宏及cycle宏)。
Clock宏说明:
计算出变频器的运转频率,并写至变频器中。
1)批注
2)把温控器H1000(PV值)读出放到$100中供画面显示用)
3)把温控H1012(输出量)读出放到$102中。
4)由于输出量$102为小数下一位,因此除10只取出整数部份$103供画面显示用。
5)批注
6)当温控输出量$102小于60.0%时,跳到LABEL1中,把$150设为3000(即变频器运转频率为30.00Hz)。
由于变频器最低运行为30Hz,利用此行宏控制住。
7)若温控输出量$102大于60.0%时,把输出量*5传到$150
中。
(当温控输出量为60%~100%当中,送风率变化30
~50Hz,因60Hz风量太大,因此最大频率控制在50Hz)
8)跳至第11行。
9)LABEL1位置。
相关宏程序如图5所示。
图5宏程序示意图
10)当温控输出量$102小于60.0%时,变频器运转频率$150固定为30.00Hz。
11)LABEL2位置。
12)把宏程序算出的运转频率$150传送给变频器H2001(频率命令)缓存器来改变设定值。
13)由于变频器的频率设定值$150为小数下2位,因此除100取出整数部份至$200中,供画面显示用。
按钮on/off宏说明:
按下启动/停止钮后,启动/停止变频器。
启动画面如图6所示。
图6启动画面
1)按钮型式为交替型,当按钮为ON时,启动“编辑ON宏”
,把变频器中H2000(对驱动器的命令)设为2,此时变频器即启动运转。
2)按钮型式为交替型,当按钮为OFF时,启动“编辑OFF宏”
,把变频器中H2000(对驱动器的命令)设为1,此时变频器即停止运转。
Cycle宏说明:
当变频器于Run状态时,让风扇产生转动的动画来呈现。
状态图画面如图7所示。
图7状态图画面
1)读取变频器H2101.0(LEDRun灯状态),当Run灯为ON时,开始改变风扇的8张动画状态图。
2)移至第9行。
3)LABEL1位置
4)当动画已显示到第8张时,跳至LABEL10位置把$160=0,以切回第1张。
5)还未到第8张时,$160的值加1,以显示下一张。
6)移至第9行。
7)LABEL10位置
8)当上方程式已显示到第8张时,程序跳到此处
把$160=0以切回第一张。
9)LABEL2位置
4温控器PID设定原理
上述的内容中,我们有提到温控器中的PID参数分别为P=1,I=240,D=0对冰水阀执行控制后即可达到恒温的目的。
原因在于空调的环境相对于工业的设备是属于温度变化很缓慢的系统,因此我们并不需要以执行AutoTurning的动作来取得PID值,而直接透由以下慨念性的PID观念即可手动设定出我们实际的需要。
于温控器中的输出量总合,是由P量+I量+D量+IOF来取得,而当中的D量是外乱因素的反应及IOF是预设的基础输出量,这两者因素对于空调的系统中,我们并不需使用因此皆设为0,只需以下面的P量及I量及可达成。
4.1P量:
1)由于空调系统是以冷气空调为例,输出量与温度关系图如图8所示。
图8输出量与温度关系图
因此温控器的控制模式要选为冷却控制(Ctrl=Cool)。
2)假设要求温度为26度,因此SV值为26。
3)由右图中得知,若P值设为1时(即当26+1=27)度时输出的P量即为100%(阀门全开)。
4)当温度到达26度时,输出P量为0%(阀门全关),因此27度~26度的过程中,是以线性的比例来对应每一过程中的输出P量。
5)若是在冷房能力是足够的情形下,温度是不易超过27度的,因为会产生100%的冷房输出把温度压下来。
6)但当温度已到达26度时,由图中的输出P量可得知为0%(阀门全关),以全关的状态要保持住恒温是不可能的,因此我们需再配合I量的计算,来补足恒温所需的基本输出量。
4.2I量:
1)结合上述P量观念,当只有P量的控制时,温度的控制只能达到右图中
(1)的状态,和设定温产生一段的误差而难以达到恒温的要求。
因此配合I量的计算输出,把P量再加上适当的I量,如右图
(2)所示,即可达到所需的目的。
如图9所示。
图9温度与时间关系图
2)由于我们知道I值是对某单位时间做积分,因此当I值愈小时,表示于很短时间即做一次积分,此时很容易造成I输出量过大,而产生振荡现象。
3)台达温控器对于I值的出厂默认值为240,这是属于徧大的I值,而由于空调系统并不需要很快速的反应,因此直接套用此值即可。
而如果用于其它需要快速反应的环境时,我们也可以适度的减少I值,以加快系统的反应,但当然可要以不发生振荡情形为基础的条件下。
5结语
上述方案经过长期实际应用验证,不仅能使中央空调系统达到良好的恒温功能,而且节能效果非常明显;
在类似系统整合控制场合,台达机电产品均能凭借优越的性能为客户带来最大的收益。