小学到出中所有公式Word格式.docx

上传人:b****5 文档编号:19219640 上传时间:2023-01-04 格式:DOCX 页数:11 大小:23.78KB
下载 相关 举报
小学到出中所有公式Word格式.docx_第1页
第1页 / 共11页
小学到出中所有公式Word格式.docx_第2页
第2页 / 共11页
小学到出中所有公式Word格式.docx_第3页
第3页 / 共11页
小学到出中所有公式Word格式.docx_第4页
第4页 / 共11页
小学到出中所有公式Word格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

小学到出中所有公式Word格式.docx

《小学到出中所有公式Word格式.docx》由会员分享,可在线阅读,更多相关《小学到出中所有公式Word格式.docx(11页珍藏版)》请在冰豆网上搜索。

小学到出中所有公式Word格式.docx

2、正方体:

V:

体积a:

棱长 

表面积=棱长×

棱长×

S表=a×

6

体 

积=棱长×

棱长 

V=a×

3、长方形:

C周长S面积a边长 

周长=(长+宽)×

C=2(a+b) 

面积=长×

宽 

S=ab 

4、长方体

V:

体积s:

面积a:

长b:

宽h:

高 

(1)表面积(长×

宽+长×

高+宽×

高)×

S=2(ab+ah+bh) 

(2)体积=长×

宽×

V=abh 

5、三角形 

s面积a底h高 

面积=底×

高÷

s=ah÷

三角形高=面积×

底 

三角形底=面积×

6、平行四边形:

面积=底×

s=ah 

7、梯形:

s面积a上底b下底h高 

面积=(上底+下底)×

s=(a+b)×

8圆形:

S面 

C周长 

∏ 

d=直径 

r=半径 

(1)周长=直径×

∏=2×

∏×

半径 

C=∏d=2∏r 

(2)面积=半径×

半径×

9、圆柱体:

v体积 

h:

s:

底面积 

r:

底面半径 

c:

底面周长 

(1)侧面积=底面周长×

(2)表面积=侧面积+底面积×

(3)体积=底面积×

(4)体积=侧面积÷

10、圆锥体:

h高 

s底面积 

r底面半径 

体积=底面积×

总份数=平均数 

和差问题的公式 

(和+差)÷

2=大数 

(和-差)÷

2=小数 

和倍问题 

和÷

(倍数-1)=小数 

小数×

倍数=大数 

(或者和-小数=大数) 

差倍问题 

差÷

(或小数+差=大数) 

植树问题 

1、非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷

株距-1 

全长=株距×

(株数-1) 

株距=全长÷

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷

株距 

株数 

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷

(株数+1) 

株距=全长÷

2、封闭线路上的植树问题的数量关系如下 

盈亏问题 

(盈+亏)÷

两次分配量之差=参加分配的份数 

(大盈-小盈)÷

(大亏-小亏)÷

相遇问题 

相遇路程=速度和×

相遇时间 

相遇时间=相遇路程÷

速度和 

速度和=相遇路程÷

追及问题 

追及距离=速度差×

追及时间 

追及时间=追及距离÷

速度差 

速度差=追及距离÷

流水问题 

顺流速度=静水速度+水流速度 

逆流速度=静水速度-水流速度 

静水速度=(顺流速度+逆流速度)÷

水流速度=(顺流速度-逆流速度)÷

浓度问题 

溶质的重量+溶剂的重量=溶液的重量 

溶质的重量÷

溶液的重量×

100%=浓度 

溶液的重量×

浓度=溶质的重量 

浓度=溶液的重量 

利润与折扣问题 

利润=售出价-成本 

利润率=利润÷

成本×

100%=(售出价÷

成本-1)×

100% 

涨跌金额=本金×

涨跌百分比 

折扣=实际售价÷

原售价×

100%(折扣<1) 

利息=本金×

利率×

时间 

税后利息=本金×

时间×

(1-20%) 

长度单位换算 

1千米=1000米 

1米=10分米 

1分米=10厘米 

1米=100厘米 

1厘米=10毫米 

面积单位换算 

1平方千米=100公顷 

1公顷=10000平方米 

1平方米=100平方分米 

1平方分米=100平方厘米 

1平方厘米=100平方毫米 

体(容)积单位换算 

1立方米=1000立方分米 

1立方分米=1000立方厘米 

1立方分米=1升 

1立方厘米=1毫升 

1立方米=1000升 

重量单位换算 

1吨=1000千克 

1千克=1000克 

1千克=1公斤 

人民币单位换算 

1元=10角 

1角=10分 

1元=100分 

时间单位换算 

1世纪=100年 

1年=12月 

大月(31天)有:

1\3\5\7\8\10\12月 

小月(30天)的有:

4\6\9\11月 

平年2月28天, 

闰年2月29天 

平年全年365天, 

闰年全年366天 

1日=24小时 

1小时=60分 

1分=60秒 

1小时=3600秒 

小学数学几何形体周长面积体积计算公式 

1、长方形的周长=(长+宽)×

C=(a+b)×

2、正方形的周长=边长×

C=4a 

3、长方形的面积=长×

S=ab 

4、正方形的面积=边长×

边长 

S=a.a=a 

5、三角形的面积=底×

S=ah÷

6、平行四边形的面积=底×

S=ah 

7、梯形的面积=(上底+下底)×

S=(a+b)h÷

8、直径=半径×

d=2r 

半径=直径÷

r=d÷

9、圆的周长=圆周率×

直径=圆周率×

c=πd=2πr 

10、圆的面积=圆周率×

常见的初中数学公式 

1过两点有且只有一条直线 

2两点之间线段最短 

3同角或等角的补角相等 

4同角或等角的余角相等 

5过一点有且只有一条直线和已知直线垂直 

6直线外一点与直线上各点连接的所有线段中,垂线段最短 

7平行公理 

经过直线外一点,有且只有一条直线与这条直线平行 

8如果两条直线都和第三条直线平行,这两条直线也互相平行 

9同位角相等,两直线平行 

10内错角相等,两直线平行 

11同旁内角互补,两直线平行 

12两直线平行,同位角相等 

13两直线平行,内错角相等 

14两直线平行,同旁内角互补 

15定理 

三角形两边的和大于第三边 

16推论 

三角形两边的差小于第三边 

17三角形内角和定理 

三角形三个内角的和等于180°

18推论1 

直角三角形的两个锐角互余 

19推论2 

三角形的一个外角等于和它不相邻的两个内角的和 

20推论3 

三角形的一个外角大于任何一个和它不相邻的内角 

21全等三角形的对应边、对应角相等 

22边角边公理(SAS) 

有两边和它们的夹角对应相等的两个三角形全等 

23角边角公理(ASA) 

有两角和它们的夹边对应相等的两个三角形全等 

24推论(AAS) 

有两角和其中一角的对边对应相等的两个三角形全等 

25边边边公理(SSS) 

有三边对应相等的两个三角形全等 

26 

斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形

全等 

27定理1 

在角的平分线上的点到这个角的两边的距离相等 

28定理2 

到一个角的两边的距离相同的点,在这个角的平分线上 

29角的平分线是到角的两边距离相等的所有点的集合 

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 

31推论1 

等腰三角形顶角的平分线平分底边并且垂直于底边 

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 

33推论3 

等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理 

如果一个三角形有两个角相等,那么这两个角

所对的边也相等(等角对等边) 

35推论1 

三个角都相等的三角形是等边三角形 

36推论2 

有一个角等于60°

的等腰三角形是等边三角形 

37在直角三角形中,如果一个锐角等于30°

那么它所对的直角边等于斜边的

一半 

38直角三角形斜边上的中线等于斜边上的一半 

39定理 

线段垂直平分线上的点和这条线段两个端点的距离相等 

40逆定理 

和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 

42定理1 

关于某条直线对称的两个图形是全等形 

43定理2 

如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直

平分线 

44定理3 

两个图形关于某直线对称,如果它们的对应线段或延长线相交, 

那么交点在对称轴上 

45逆定理 

如果两个图形的对应点连线被同一条直线垂直平分,那么这两

个图形关于这条直线对称 

46勾股定理 

直角三角形两直角边a、b的平方和、等于斜边c的平方,

即a^2+b^2=c^2 

47勾股定理的逆定理 

如果三角形的三边长a、b、c有关系a^2+b^2=c^2,

那么这个三角形是直角三角形 

48定理 

四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理 

n边形的内角的和等于(n-2)×

180°

51推论 

任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等 

53平行四边形性质定理2平行四边形的对边相等 

54推论夹在两条平行线间的平行线段相等 

55平行四边形性质定理3 

平行四边形的对角线互相平分 

56平行四边形判定定理1 

两组对角分别相等的四边形是平行四边形 

57平行四边形判定定理2 

两组对边分别相等的四边形是平行四边形 

58平行四边形判定定理3 

对角线互相平分的四边形是平行四边形 

59平行四边形判定定理 

一组对边平行相等的四边形是平行四边形 

60矩形性质定理1 

矩形的四个角都是直角 

61矩形性质定理2 

矩形的对角线相等 

62矩形判定定理1 

有三个角是直角的四边形是矩形 

63矩形判定定理2 

对角线相等的平行四边形是矩形 

64菱形性质定理1 

菱形的四条边都相等 

65菱形性质定理2 

菱形的对角线互相垂直,并且每一条对角线平分一组对角 

66菱形面积=对角线乘积的一半,即S=(a×

b)÷

67菱形判定定理1 

四边都相等的四边形是菱形 

68菱形判定定理2 

对角线互相垂直的平行四边形是菱形 

69正方形性质定理1 

正方形的四个角都是直角,四条边都相等 

70正方形性质定理2 

正方形的两条对角线相等,并且互相垂直平分,每

条对角线平分一组对角 

71定理1 

关于中心对称的两个图形是全等的 

72定理2 

关于中心对称的两个图形,对称点连线都经过对称中心,并且被

对称中心平分 

73逆定理 

如果两个图形的对应点连线都经过某一点,并且被这一点平分,

那么这两个图形关于这一点对称 

74等腰梯形性质定理 

等腰梯形在同一底上的两个角相等 

75等腰梯形的两条对角线相等 

76等腰梯形判定定理 

在同一底上的两个角相等的梯形是等腰梯形 

77对角线相等的梯形是等腰梯形 

78平行线等分线段定理 

如果一组平行线在一条直线上截得的线段相等,

那么在其他直线上截得的线段也相等 

79推论1 

经过梯形一腰的中点与底平行的直线,必平分另一腰 

80推论2 

经过三角形一边的中点与另一边平行的直线,必平分第三边 

81三角形中位线定理 

三角形的中位线平行于第三边,并且等于它的一半 

82梯形中位线定理 

梯形的中位线平行于两底,并且等于两底和的一半

L=(a+b)÷

S=L×

83

(1)比例的基本性质 

如果a:

b=c:

d,那么ad=bc如果ad=bc,那么a:

84

(2)合比性质 

如果a/b=c/d,那么(a±

b)/b=(c±

d)/d 

85(3)等比性质 

如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)

/(b+d+…+n)=a/b 

86平行线分线段成比例定理 

三条平行线截两条直线,所得的对应线段成

比例 

87推论 

平行于三角形一边的直线截其他两边(或两边的延长线),所得

的应线段成比例 

88定理 

如果一条直线截三角形的两边(或两边的延长线)所得的对应线

段成比例,那么这条直线平行于三角形的第三边 

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的

三边与原三角形三边对应成比例 

90定理 

平行于三角形一边的直线和其他两边(或两边的延长线)相交,

所构成的三角形与原三角形相似 

91相似三角形判定定理1 

两角对应相等,两三角形相似(ASA) 

92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 

93判定定理2 

两边对应成比例且夹角相等,两三角形相似(SAS) 

94判定定理3 

三边对应成比例,两三角形相似(SSS) 

95定理 

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的

斜边和一条直角边对应成比例,那么这两个直角三角形相似 

96性质定理1 

相似三角形对应高的比,对应中线的比与对应角平分线的

比都等于相似比 

97性质定理2 

相似三角形周长的比等于相似比 

98性质定理3 

相似三角形面积的比等于相似比的平方 

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的

余角的正弦值 

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的

余角的正切值 

101圆是定点的距离等于定长的点的集合 

102圆的内部可以看作是圆心的距离小于半径的点的集合 

103圆的外部可以看作是圆心的距离大于半径的点的集合 

104同圆或等圆的半径相等 

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 

107到已知角的两边距离相等的点的轨迹,是这个角的平分线 

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等

的一条直线 

109定理 

不在同一直线上的三点确定一个圆。

110垂径定理 

垂直于弦的直径平分这条弦并且平分弦所对的两条弧 

111推论1 

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 

112推论2 

圆的两条平行弦所夹的弧相等 

113圆是以圆心为对称中心的中心对称图形 

114定理 

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,

所对的弦的弦心距相等 

115推论 

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦

心距中有一组量相等那么它们所对应的其余各组量都相等 

116定理 

一条弧所对的圆周角等于它所对的圆心角的一半 

117推论1 

同弧或等弧所对的圆周角相等;

同圆或等圆中,相等的圆周角

所对的弧也相等 

118推论2 

半圆(或直径)所对的圆周角是直角;

90°

的圆周角所对的弦

是直径 

119推论3 

如果三角形一边上的中线等于这边的一半,那么这个三角形是

直角三角形 

120定理 

圆的内接四边形的对角互补,并且任何一个外角都等于它的内对

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 家庭教育

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1