卫星通讯中的一些概念.docx

上传人:b****1 文档编号:19205992 上传时间:2023-04-24 格式:DOCX 页数:16 大小:66.47KB
下载 相关 举报
卫星通讯中的一些概念.docx_第1页
第1页 / 共16页
卫星通讯中的一些概念.docx_第2页
第2页 / 共16页
卫星通讯中的一些概念.docx_第3页
第3页 / 共16页
卫星通讯中的一些概念.docx_第4页
第4页 / 共16页
卫星通讯中的一些概念.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

卫星通讯中的一些概念.docx

《卫星通讯中的一些概念.docx》由会员分享,可在线阅读,更多相关《卫星通讯中的一些概念.docx(16页珍藏版)》请在冰豆网上搜索。

卫星通讯中的一些概念.docx

卫星通讯中的一些概念

卫星通讯中的一些概念

1.HPA:

high-poweramplifier高倍放大器,大功率放大器

2.BUC:

BUC(BlockUp-Converter)即:

上变频功率放大器。

把卫星Modem输出的L波段信号转变为高频的射频信号逆向传送到C波段、KU波段或KA波段卫星。

 

ABUC(BlockUp-Converter)takesanL-bandinputandtransmitsitupstreamtothesatelliteonKa,Ku,orCband. 

BUC'sareratedaccordingtotheiroutputpower.AlowpowerKabandBUCcantransmitwithaslittleas2watts,whileahighpowerC-bandBUCcantransmitwithasmuchas200watts. 

TheBUCissometimesreferredtoastheTXB(TransmissionBlock).

3.LNB:

LNB又叫高频头(LowNoiseBlock)即低噪声下变频器,其功能是将由馈源传送的卫星信号经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。

LNB(lownoiseblockdownconverter)就是低讯降频放大器一般可分为c频lnb(3.7ghz-4.2ghz)和ku频lnb(10.7ghz-12.75ghz)。

因卫星讯号在抵达天线前已相当微弱及同轴电缆传输的频率越高讯号损耗越大,所以才需要lnb来做改善。

lnb的工作流程就是先将卫星高频讯号放大至数十万倍再利用本地振荡电路将高频讯号转换至中频950mhz-2050mhz(依lnb种类决定中频范围),以利于同轴电缆的传输及卫星接收机的解调和工作。

它是由微波低噪声放大器,微波混频器,第一本振和第一中频前置放大器组成,一般分C波段用的C头,和偏馈使用的KU头,LNB上都会有探针,电路对这个探针检测到的卫星下行信号进行低噪声放大和下变频处理,产生950~2150MHZ带宽的第一中频信号经过馈线输送数字调谐解调器

等效噪声温度与噪声系数

寇松江

(爱科迪信息通讯技术有限公司,北京,100070)   

     噪声温度和噪声系数是通信领域基本而重要的技术指标。

在卫星通信中我们常常谈到天线的品质因数(G/T值),LNB的噪声系数等,这些参数都与等效噪声温度有关。

1.热噪声

     热噪声是由于传导媒质中带电粒子(通常是电子)随机运动而产生的。

而且温度越高,噪声越大。

从通信系统的角度来看,天线噪声、馈线噪声、接收机产生的噪声都可以作为热噪声来处理,或者有的本身就是热噪声。

图1电阻的噪声温度

    如图1所示网络,电阻R与线性网络匹配连接。

电阻R是网络的噪声源,网络带宽Bn。

则网络收到的噪声功率为

N=kTiBn

式中k为普朗克常数,Ti为电阻的物理温度,Bn为线性网络的带宽。

从式中可看出,线性网络接收到的噪声功率与温度T成正比,因此,我们可以将热噪声与温度联系起来,建立一种对应关系。

2.等效噪声温度

   在卫星通信中我们遇到的网络大部分是线性网络,或近视线性网络。

无论是有源线性网络如放大器、变频器,还是无源线性网络如滤波器,其内部总是会不同程度产生噪声的。

这些噪声可能是也可能不是热噪声,但为分析、设计线路的方便,我们可以将他们全部视为热噪声,从而引入等效噪声温度的概念。

   网络内部是要产生噪声的,但我们可以将它等效为一个无噪声的网络和一个噪声源,并将这个噪声源归算到网络输入端,并用ΔN表示,如图2所示。

图2网络的等效噪声温度   

   网络M输出的噪声功率为:

N=(kTiBn+ΔN)Gp        

(1)

式中Gp为网络增益。

   我们可以假想有一个温度为Te的电阻,其产生的热噪声功率等于ΔN,即

ΔN=kTeBn

   我们称网络M的噪声温度为Te,或者说,网络M产生的噪声等效为温度为Te的热噪声源产生的功率。

   这样式

(1)就可以写成

N=kBn(Ti+Te)Gp

   须强调指出的是:

Ti是一个依赖于环境的物理温度;而Te这是一个与物理温度无关的等效温度。

   卫星通信地球站接收机的等效噪声温度在20K-1000K的范围内,卫星转发器接收机的典型噪声温度在1000K左右。

3.噪声系数

   噪声系数NF定义为:

接收机的输入信噪比与输出信噪比的比值,它用来表征接收机噪声性能的好坏。

   当接收机内部不产生噪声时,NF=1。

事实上,任何接收机内部都会产生噪声的,因此NF总是大于1的,而且内部噪声越大,NF值越大。

4.等效噪声温度与噪声系数的换算

   通常取Ti为室温,即290K左右。

   若用dB表示时,则

   如Norsat公司生产的LNB1008XBN,其噪声系数NF=0.8dB,等效噪声温度为58K。

 

参考资料

1.吕海寰等.卫星通信系统(修订本).北京:

人民邮电出版社,1994.

2.王丽娜.卫星通信系统.北京:

国防工业出版社,2006,5.

3.储钟圻.数字卫星通信.北京:

机械工业出版社,2005,9.

卫星通信地球站品质因数G/T值的测量

寇松江

(爱科迪信息通讯技术有限公司,北京,100070)

E-mail:

kousongjiang@

1.测量方法

   地球站品质因数G/T采用间接法测量,即分别测出天线接收增益和系统噪声温度,从而计算G/T值。

天线接收增益采用天线方向图由波束宽度法计算得出。

系统噪声温度通过测量Y因子经计算得出。

2.天线噪声温度测试框图

  

 

天线噪声温度测试框图

3.测试步骤

3.1根据天线接收方向图的波束宽度求出天线接收增益(略)

3.2测试天线噪声温度

(1) 按图连接测试系统

   B接A时,天线对准冷空。

B接C时,LNB接匹配负载。

(2)根据卫星下行频率和LNB本振频率设置好频谱仪的工作频率

   如:

卫星下行频率分别取:

12.50GHz

      LNB本振频率为:

11.30GHz.

      频谱仪工作频率为:

卫星下行频率—LNB本振频率。

(3)测试天线对准冷空时的接收电平

   转动波导开关,使B接A,调整天线仰角至待测试角度,如100,调整天线方位使天线对准冷空。

   读取天线对准冷空时的频谱仪示数a1(单位为dBm)。

(4)测试LNB接标准匹配负载时的接收电平

   转动波导开关,使B接C,LNB接标准匹配负载。

   读取LNB接标准匹配负载时的频谱仪示数a2(单位为dBm)。

(5)计算Y因子

   Y=a2-a1   

(6)计算天线系统噪声温度TS(k)

    天线系统噪声温度为:

 

   

   式中:

   T0=273+t0   (K)

   t0:

测试时的环境温度(°C),如:

温度计读数为:

t0=27°C,则:

T0=300K

   TLNB:

LNB的噪声温度,

   LNB的噪声温度为:

    

   NF:

LNB的噪声系数,可通过查LNB参数表获得,如:

NF=0.9(dB)则:

TLNB= 69.08 K

(7)计算G/T值

                                   G/T=G-10log(Ts)    (dB/k)

 

参考资料:

1.南京邮电大学卫星通信实验室,《卫星通信射频测试方法》

常用卫星通信天线介绍

(一) 

寇松江

(爱科迪信息通讯技术有限公司,北京,100070) 

E-mail:

kousongjiang@

    天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。

地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。

反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。

   反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。

下文对一些常用的天线作简单介绍。

1. 抛物面天线

   抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。

发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。

由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。

接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1抛物面天线

   抛物面天线的优点是结构简单,较双反射面天线便于装配。

缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。

2. 卡塞格伦天线

   卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。

主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。

从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。

由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。

对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。

修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。

目前,大多数地球站采用的都是修正型卡塞格伦天线。

   卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。

缺点是副反射面极其支干会造成一定的遮挡。

图2卡塞格伦天线

3. 格里高利天线

   格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。

与卡塞格伦天线不同的是,它的副反射面是一个椭球面。

馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重合。

格里高利天线的许多特性都与卡塞格伦天线相似,不同的是椭球面的焦点是一个实焦点,所有波束都汇聚于这一点。

图3格里高利天线

4. 环焦天线

   对卫星通信天线的总要求是在宽频带内有较低的旁瓣、较高的口面效率及较高的G/T值,当天线的口面较小时,使用环焦天线能较好地同时满足这些要求。

因此,环焦天线特别适用于VSAT地球站。

   环焦天线由主反射面、副反射面和馈源喇叭三部分组成,结构如图4所示。

主反射面为部分旋转抛物面,副反射面由椭圆弧CB绕主反射面轴线OC旋转一周构成,馈源喇叭位于旋转椭球面的一个焦点M上。

由馈源辐射的电波经副反射面反射后汇聚于椭球面的另一焦点M’,M’是抛物面OD的焦点,因此,经主反射面反射后的电波平行射出。

由于天线是绕机械轴的旋转体,因此焦点M’构成一个垂直于天线轴的圆环,故称此天线为环焦天线。

环焦天线的设计可消除副反射面对对电波的阻挡,也可基本消除副反射面对馈源喇叭的回射,馈源喇叭和副反射面可设计得很近,这样有利于在宽频带内降低天线的旁瓣和驻波比,提高天线效率。

缺点是主反射面地利用率低,如图4所示,AA’间的区域没有作用。

图4环焦天线

5. 偏馈型天线

   无论是抛物面天线,还是卡塞格伦天线,都有一个缺点,总有一部分电波能量被副反射面阻挡,造成天线增益下降,旁瓣增益增高。

可以使用天线偏馈技术解决这个问题。

所谓偏馈天线,就是将馈源和副反射面移出天线主反射面的辐射区,这样就不会遮挡主波束,从而提高天线效率,降低旁瓣电平。

偏馈型天线广泛应用于口径较小的地球站。

这类天线的几何结构比轴对称天线的结构要复杂得多,特别是双反射面偏馈型天线,其馈源、焦距的调整要复杂得多。

图5偏馈天线

6. 双频段天线

   如果使用频率选择表面(FSS)作副反射面,就可以构成双频段天线。

FSS是一种空间滤波器,通过在空间放置周期性的金属贴片或金属缝隙构成,它在某些频率可让电磁波无衰减的通过,而在另外一些频率将电磁波完全反射。

其结构及电磁特性如图6所示,在频率f1电磁波被完全反射,在频率f2电磁波完全通过。

如果我们使用这样的FSS作副反射面,并使馈源1工作在f1,馈源2工作在f2,则两个馈源可无干扰地工作在同一副天线上,如图7所示。

利用相同地原理,可制成多频段天线,这种技术已在卫星上得到应用。

这种天线地优点是可有效利用反射面,降低天线重量。

 

图6FSS的结构及电磁特性

图7双频段天线

 

参考资料

[1]JohnD.Kraus,RonaldJ.Marhefka著.章文勋译.天线.北京:

电子工业出版社,2004.

[2]林昌禄等著.天线工程手册.北京:

电子工业出版社,2002.

[3]王丽娜等著.卫星通信系统.北京:

国防工业出版社,2006.

[4]B.A.Munk.FrequencySelectiveSurfaces,TheoryandDesign.NewYork:

Wiley,2000.

常用卫星通信天线介绍

(二)

平板天线

寇松江

(爱科迪信息通讯技术有限公司,北京,100070)

E-mail:

kousongjiang@

1.平板天线介绍

        平板天线采用阵列天线技术,将几十上百甚至上千个天线单元集成在一块平板上,以获得较高的增益。

平板天线主要应用在雷达方面,近年来平板技术开始出现在卫星通信领域。

       平板天线的天线单元种类很多,常用的有微带贴片、波导缝隙、喇叭天线等。

平板天线可分为平板、平板相控阵、平板抛物面等类型。

2.平板天线与抛物面的比较

      平板天线剖面低,易于小型化设计;平板天线的波束可赋形,可设计为多波束;易进行共形设计;平板相控阵天线更加适合高速载体上的动中通信。

      平板天线的增益一般比同口径抛物面天线低,因为它的辐射效率、口径效率较抛物面低。

      笔者认为,平板天线更适合于低剖面动中通方向的应用。

3.常见Ku波段平板天线介绍

      平板天线的应用频带很宽,本文仅涉及Ku频段的天线。

(1)StealthRay低抛面相控阵天线

       StealthRay系列天线是Ku频段低剖面、双向动中通相控阵天线,是美国RaysatAntennaSystems(RAS)公司的产品。

该公司是Raysat集团公司中的一员。

Rasat在1997年获得了相控阵技术专利,并将其应用于卫星通信天线的开发之中。

相控阵天线最大的优势是波束方向的改变是电扫,而不是传统的机械扫描。

波束方向改变迅速,无惯性。

非常适合高速运动载体的通信。

       StealthRay系列的最新产品是StealthRay5000,其外形如图1所示。

尺寸为115Lx90Wx21Hcm,外观优雅漂亮。

跟星性能极为优良。

图1StealthRay 5000   

      其内部结构如图2所示,天线面为微带阵列结构,共四片,两片接收,两片发射,采用分片式布局,以压低天线高度。

射频方面采用极化自适应和空间波束合成技术。

发射增益29dBi,接收增益28dBi。

详细信息请参阅 2009年10月29日博客《超低抛面相控阵动中通卫星通信天线StealthRay3000》。

图2StealthRay 5000 内部结构  

(2)Mijet平板动中通天线

       Mijet系列天线是以色列公司Starling-com的产品,它是Ku频段平板动中通天线。

Starling-com公司最初生产空载动中通卫星通信天线,剖面低,增益高,性能好。

Mijet天线装在飞机上的情况如图3所示。

天线直径76cm,高度15cm,重量50Kg。

图3Mijet平板动中通天线

       Mijet内部结构如图4所示。

采用分片结构,一片发射,两片接收。

天线面采用微带阵列结构。

EIRP=42dBW,G/T值=11dB/K。

图4Mijet内部结构

       近年来Starling-com推出一款汽车上使用的Ku频段平板动中通天线StarCar,其外形及内部结构如图5所示。

但StarCar的销售情况并不好。

与StealthRay相比,StarCar在跟星性能方面还有待改进,毕竟空载平台与车辆平台的运动规律有很大不同。

图5StarCar车载平板天线

(3)MicrosatSystem平板相控阵静中通天线

        Microsat天线是美国Gigasat公司的产品。

天线采用微带阵列结构,等效口径0.55m,可工作于X、Ku、Ka频段。

外尺寸45×56×25cm,工作于Ku波段时EIRP=49dBw,全重只有17Kg(含充电电池)。

被称为真正的手提箱式便携天线。

图6MicrosatSystem平板相控阵静中通天线

(4)EL/K1891机载相控阵动中通天线

        这款天线是以色列航空工业集团公司的产品,被使用在阿帕奇直升机上,提供X/Ku频段动中通卫星通信。

如图7所示。

图7EL/K1891机载相控阵动中通天线

      该天线采用波导缝隙结构,收发单元各70~80个。

提供低速率数据传输。

内部结构如图所示。

图8EL/K1891天线内部结构

4.国内卫星通信平板天线的发展

        在卫通领域,国内平板天线的发展很滞后,尚未有成熟的产品。

石家庄54所尝试采用波导缝隙技术开发Ku频段平板动中通相控阵天线,并于2007年申请了天线面的专利。

但直到今天尚未有成熟的产品面市。

上海51所,仿照StealthRay2000,研发了一款低抛面相控阵天线,但仅限于接收。

今年的卫星大会及消防器材展会上都有Ku频段平板静中通天线参展,如图9、图10所示。

图92009年卫星应用大会展出的平板天线

图102009年消防器材大会展出的平板天线

       准确地说,这些天线都是半成品,尚未实现极化自适应调整,只能通过旋转天线面来调整极化。

      由此可见,中国自己要生产低剖面平板或相控阵动中通天线还有很长的路要走。

 

抛物面天线部分请参阅2008年10月17日博客

《常用卫星通信天线介绍

(一)》 

如有转载,请注明出处:

天基通信:

 

参考资料

1.罗群等译.相控阵天线手册(第二版).北京:

电子工业出版社,2008,1.

2.林昌禄.天线工程手册.北京:

电子工业出版社,2002,6.

3.宋卓颖.一种新型的卫星通信相控阵技术.2007.3.

4.宋铮,张建华,黄冶.天线与电波传播.西安电子科技大学出版社,2003,7.

5.张钧等.微带天线理论与工程.1988,7.

6.Gigasat网站:

7.Raysat网站:

8.Starling-com网站:

 http:

//www.starling-

9.ELTASystemsLtd.网站http:

//www.iai.co.il/

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中教育 > 语文

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1