苏教版数学八年级上册知识点总结审核修改版.docx
《苏教版数学八年级上册知识点总结审核修改版.docx》由会员分享,可在线阅读,更多相关《苏教版数学八年级上册知识点总结审核修改版.docx(13页珍藏版)》请在冰豆网上搜索。
苏教版数学八年级上册知识点总结审核修改版
苏教版《数学》(八年级上册)知识点总结
第一章轴对称图形
一、等腰三角形和等边三角形
等腰三角形的定义:
有两条边相等的三角形叫做等腰三角形
2、等边三角形的定义:
有三条边相等的三角形叫做等边三角形
3、等腰三角形的性质:
(1)两腰相等
(2)两底角相等(3)“三线合一”,即顶角平分线、底边上的中线、底边上的高互相重合
4、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形
(2)有两个角相等的三角形是等腰三角形
5、等边三角形的性质:
三边都相等,三个角都相等,每一个角都等于60°
6、等边三角形的判定:
(1)三条边都相等的三角形是等边三角形
(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形
7、等腰直角三角形的性质:
顶角等于90°,底角等于45°,两直角边相等等腰直角三角形的判定:
(1)顶角为90°的等腰三角形
(2)底角为45°的等腰三角形
8、含30°角的直角三角形的重要结论:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一
二、梯形
(一)1、梯形的相关概念
一组对边平行而另一组对边不平行的四边形叫做梯形。
梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。
梯形中不平行的两边叫做梯形的腰。
梯形的两底的距离叫做梯形的高。
2、梯形的判定
(1)定义:
一组对边平行而另一组对边不平行的四边形是梯形。
(2)一组对边平行且不相等的四边形是梯形。
(二)直角梯形的定义:
一腰垂直于底的梯形叫做直角梯形。
一般地,梯形的分类如下:
一般梯形
梯形 直角梯形
特殊梯形
等腰梯形
(三)等腰梯形
1、等腰梯形的定义
两腰相等的梯形叫做等腰梯形。
2、等腰梯形的性质
(1)等腰梯形的两腰相等,两底平行。
(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。
(3)等腰梯形的对角线相等。
(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。
3、等腰梯形的判定
(1)定义:
两腰相等的梯形是等腰梯形
(2)定理:
在同一底上的两个角相等的梯形是等腰梯形
(3)对角线相等的梯形是等腰梯形。
(选择题和填空题可直接用)
(四)梯形的面积
(1)如图,
(2)梯形中有关图形的面积:
①
;
②
;
③
第2章勾股定理与平方根
一.勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
2、勾股定理的逆定理
如果三角形的三边长a,b,c有关系
,那么这个三角形是直角三角形。
3、勾股数:
满足
的三个正整数,称为勾股数。
二、实数的概念及分类
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数:
无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数或代数式,如
+8等;
(3)有特定结构的数,即人造无理数,如0.1010010001…等;
三、平方根、算数平方根和立方根
1、算术平方根:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:
记作“
”,读作根号a。
性质:
正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
表示方法:
正数a的平方根记做“
”,读作“正、负根号a”。
性质:
一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:
求一个数a的平方根的运算,叫做开平方。
注意
的双重非负性:
0
3、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
表示方法:
记作
性质:
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:
,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:
正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:
在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:
设a、b是实数,
(3)求商比较法:
设a、b是两正实数,
(4)绝对值比较法:
设a、b是两负实数,则
。
(5)平方法:
设a、b是两负实数,则
。
五、实数的运算
(1)六种运算:
加、减、乘、除、乘方、开方
(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章中心对称图形
(一)
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
三、四边形的相关概念
1、四边形
在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性
3、四边形的内角和定理及外角和定理
四边形的内角和定理:
四边形的内角和等于360°。
四边形的外角和定理:
四边形的外角和等于360°。
推论:
多边形的内角和定理:
n边形的内角和等于
180°;
多边形的外角和定理:
任意多边形的外角和等于360°。
6、设多边形的边数为n,则多边形的对角线共有
条。
从n边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
四.平行四边形
1、平行四边形的定义
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:
(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:
夹在两条平行线间的平行线段相等。
3、平行四边形的判定
(1)定义:
两组对边分别平行的四边形是平行四边形
(2)定理1:
两组对角分别相等的四边形是平行四边形
(3)定理2:
两组对边分别相等的四边形是平行四边形
(4)定理3:
对角线互相平分的四边形是平行四边形
(5)定理4:
一组对边平行且相等的四边形是平行四边形
4、两条平行线的距离
两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
平行线间的距离处处相等。
5、平行四边形的面积
S平行四边形=底边长×高=ah
五、矩形
1、矩形的定义
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)矩形的对边平行且相等
(2)矩形的四个角都是直角
(3)矩形的对角线相等且互相平分
(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定
(1)定义:
有一个角是直角的平行四边形是矩形
(2)定理1:
有三个角是直角的四边形是矩形
(3)定理2:
对角线相等的平行四边形是矩形
4、矩形的面积
S矩形=长×宽=ab
六、菱形
1、菱形的定义
有一组邻边相等的平行四边形叫做菱形
2、菱形的性质
(1)菱形的四条边相等,对边平行
(2)菱形的相邻的角互补,对角相等
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角
(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定
(1)定义:
有一组邻边相等的平行四边形是菱形
(2)定理1:
四边都相等的四边形是菱形
(3)定理2:
对角线互相垂直的平行四边形是菱形
4、菱形的面积
S菱形=底边长×高=两条对角线乘积的一半
七.正方形
1、正方形的定义
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质
(1)正方形四条边都相等,对边平行
(2)正方形的四个角都是直角
(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角
(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。
3、正方形的判定
判定一个四边形是正方形的主要依据是定义,途径有两种:
先证它是矩形,再证它是菱形。
先证它是菱形,再证它是矩形。
4、正方形的面积
设正方形边长为a,对角线长为b
S正方形=
八、中心对称图形
1、定义
在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。