信号系统及系统响应Word文件下载.docx
《信号系统及系统响应Word文件下载.docx》由会员分享,可在线阅读,更多相关《信号系统及系统响应Word文件下载.docx(14页珍藏版)》请在冰豆网上搜索。
/M,k=0,1……。
(三)信号卷积
一个线性时不变离散系统的响应y(n)可以用它的单位冲激响应h(n)和输入信号x(n)的卷积来表示:
y(n)=x(n)*h(n)=∑x(m)h(n-m)
根据傅里叶变换和Z变换的性质得
Y(z)=X(z)H(z)
Y(ejw)=X(ejw)H(ejw)
卷积运算可以在频域用乘积实现。
三、实验内容及步骤
1、分析理想采样信号序列的特性
1.产生理想采样信号(采样频率为1000HZ)
>
n=0:
50;
A=444.128;
a=50*sqrt(2.0)*pi;
T=0.001;
w0=50*sqrt(2.0)*pi;
x=A*exp(-a*n*T).*sin(w0*n*T);
subplot(1,1,1);
stem(n,x);
title('
理想采样信号序列'
);
2.产生理想采样信号序列的幅度谱和相位谱(采样频率为1000HZ)
k=-25:
25;
W=(pi/12.5)*k;
f=(1/25)*k*1000;
X=x*(exp(-j*pi/12.5)).^(n'
*k);
magX=abs(X);
subplot(2,1,1);
stem(f,magX);
理想采样信号序列的幅度谱'
angX=angle(X);
subplot(2,1,2);
stem(f,angX);
理想采样信号序列的相位谱'
3.产生理想采样信号序列(采样频率为300HZ)
T=1/300;
4.产生理想采样信号序列的幅度谱和相位谱(采样频率为300HZ)
f=(1/25)*k*300;
5.产生理想采样信号序列(采样频率为200HZ)
T=1/200;
6.产生理想采样信号序列的幅度谱和相位谱(采样频率为200HZ)
f=(1/25)*k*200;
ste
m(f,angX);
分析实验结果:
采样频率为200HZ时产生了频谱混淆现象,产生这种现象的原因是采样频率小于两倍的信号频率最大上限。
2、离散信号、系统和系统响应的分析
1.产生单位脉冲信号序列xb(n)及其幅度谱和相位谱
x=[1zeros(1,50)];
subplot(3,1,1);
单位脉冲信号序列'
subplot(3,1,2);
stem(magX);
单位脉冲信号的幅度谱'
angX=angle(X);
2.产生特定冲激串hb(n)及其幅度谱和相位谱
n=1:
h=zeros(1,50);
h
(1)=1;
h
(2)=2.5;
h(3)=2.5;
h(4)=1;
closeall;
subplot(3,1,1);
stem(h);
特定冲激串'
H=h*(exp(-j*pi/12.5)).^(n'
magH=abs(H);
stem(magH);
特定冲激串的幅度谱'
angH=angle(H);
subplot(3,1,3);
stem(angH);
特定冲激串的相位谱'
3.产生输出信号y(n)及其幅度谱和相位谱(其中输入信号为xb(n),系统为hb(n))
hb=zeros(1,50);
hb
(1)=1;
hb
(2)=2.5;
hb(3)=2.5;
hb(4)=1;
m=0:
xb=[1zeros(1,50)];
y=conv(xb,hb);
stem(y);
输出信号y[n]'
Y=fft(y);
magY=abs(Y);
stem(magY);
y[n]的幅度谱'
angY=angle(Y);
stem(angY);
y[n]的相位谱'
4.产生矩形序列xc(n)及其幅度谱和相位谱
x=[ones(1,10)zeros(1,41)];
xc=[ones(1,10)zeros(1,41)];
stem(n,xc);
矩形序列'
axis([05001.2]);
Xc=xc*(exp(-j*pi/25)).^(n'
magXc=abs(Xc);
stem(magXc);
矩形序列的幅度谱'
angXc=angle(Xc);
stem(angXc);
矩形序列的相位谱'
5.产生输出信号y(n)及其幅度谱和相位谱(其
中输入信号为xc(n),系统为ha(n))
ha=xc;
y=conv(xc,ha);
stem(hb);
系统hb[n]'
m=1:
T=1;
A=1;
a=0.4;
w0=2.0734;
x=A*exp(-a*m*T).*sin(w0*m*T);
stem(x);
输入信号x[n]'
y=conv(x,hb);
a=0.1;
a=0.4;
w0=1.2516;
卷积定理的验证
X=x*(exp(-j*pi/12.5)).^(n'
subplot(3,2,1);
输入信号的幅度谱'
subplot(3,2,2);
stem(angX);
输入信号的相位谱'
Hb=hb*(exp(-j*pi/12.5)).^(n'
magHb=abs(Hb);
subplot(3,2,3);
stem(magHb);
系统响应的幅度谱'
angHb=angle(Hb);
subplot(3,2,4);
stem(angHb);
系统响应的相位谱'
99;
k=1:
Y=y*(exp(-j*pi/12.5)).^(n'
subplot(3,2,5);
输出信号的幅度谱'
subplot(3,2,6);
输出信号的相位谱'
XHb=X.*Hb;
stem(abs(XHb));
x(n)的幅度谱与hb(n)的幅度谱相乘'
stem(abs(Y));
y(n)的幅度谱'
四、思考题
(1)在分析理想采样信号序列的特性实验中,利用不同采样频率所得的采样信号序列的傅式变换频谱,数字频率度量是否相同?
它们所对应的模拟频率是否相同?
答:
利用不同采样频率所得的采样信号序列的傅式变换频谱,数字频率度量不相同,因为采样频率不同采样间隔就变了。
所对应的模拟频率可能相同也可能不相同,因为如果采样频率大于两倍的信号频率最大上限值时就不会出现频谱混叠,就能不失真的还原,而如果采样频率小于两倍信号频率最大上限值时就会出现频谱混叠,还原时就会失真。
(2)在卷积定理的验证过程中,如果选不同的M值,例如选M=50和M=30,分别做序列的傅式变换,并求得Y(ejwk)=Xa(ejwk)Hb(ejwk),所得的结果之间有何差异?
为什么?
当M=30时只能出现幅度谱的图的一小部分,虽然出现的两个图也一样,但不具有普遍性,因此取M=50比较好。