基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx

上传人:b****5 文档编号:18893854 上传时间:2023-01-02 格式:DOCX 页数:28 大小:367.97KB
下载 相关 举报
基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx_第1页
第1页 / 共28页
基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx_第2页
第2页 / 共28页
基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx_第3页
第3页 / 共28页
基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx_第4页
第4页 / 共28页
基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx

《基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx》由会员分享,可在线阅读,更多相关《基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx(28页珍藏版)》请在冰豆网上搜索。

基于单片机的红外报警系统设计word文档良心出品Word文档格式.docx

(2)本红外线防盗报警系统由热释电红外传感器、家庭智能报警器、单片机控制电路、LED控制电路及相关的控制管理软件组成。

用户终端完成信息采集、处理、

数据传送、功能设定、本地显示、本地报警等功能。

终端由中央处理器、输入模块、

输出模块、通信模块、功能设定模块等部分组成。

(3)系统可实现功能。

当人员外出时,可把报警系统设置在外出布防状态,探测器工作起来。

当有人闯入时,热释电红外传感器将探测到动作,设置在监测点上的红外探头将人体辐射的红外光谱变换成电信号,经放大电路、比较电路送至门限开关,打开门限阀门送出TTL电平至AT89S51单片机,经单片机处理运算后驱动执行报警电路使警号发声。

(4)红外线具有隐蔽性,在露天防护的地方设计一束红外线可以方便地检测到是否有人出入。

此类装置设计的要点:

其一是能有效判断是否有人员进入;

其二是尽可能大地增加防护范围。

当然,系统工作的稳定性和可靠性也是追求的重要指标。

至于报警可采用声光信号。

2、热释电红外传感器概述

2.1PIR传感器简单介绍

热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。

是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。

它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。

将这个电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警、自动览测等。

自然界中存在的各种物体,如人体、木材、石头、火焰、冰等都会发出不同波长的红外线,利用红外传感器可对其进行检测。

根据工作原理,红外传感器分为热型和量子型两类,热型红外传感器也称热释电红外传感器或被动红外传感器。

与量子型相比,其频响速度较慢,灵敏度较低,但响应的红外线波长范围较宽,价格便宜,并可在常温下工作。

量子型与热型的特点相反,而且要求冷却条件。

它是目前在防盗报警、火灾检测、自动门、自动水龙头、自动电梯、自动照明及非接触温度测量等领域应用最广泛的传感器。

其原因为:

①被测对象自身发射红外线,可不必另设光源;

②大气对2—2.6lLm、3—5lLm、8—141Lm三个被称为“大气窗口”的特定波段的红外线吸收甚少,可非常容易被检测;

③中、远红外线不受可见光影响,可不分昼夜进行检测。

2.2PIR的原理特性

热释电红外线传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。

在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。

由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。

为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20米范围内人的行动。

菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。

当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。

人体辐射的红外线中心波长为9~10--um,而探测元件的波长灵敏度在0.2~20--um范围内几乎稳定不变。

在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10--um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。

一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而输出电压信号。

在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。

被动红外报警器的特点是能够响应入侵者在所防范区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。

2.3PIR结构特性及安装

2.3.1PIR构特性

图2-1是一个双探测元热释电红外传感器的结构示意图。

使用时D端接电源正极,G端接电源负极,S端为信号输出。

该传感器将两个极性相反、特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰。

它利用两个极性相反、大小相等的干扰信号在内部相互抵消的原理来使传感器得到补偿。

对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号。

制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长范围为0.2~20μm。

为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块干涉滤波片。

这种滤波片除了允许某些波长范围的红外辐射通过外,还能将灯光、阳光和其它红外辐射拒之门外,不给予吸收。

图2-1双探测元热释电红外传感器

当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上

时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。

由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。

本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。

本设计所用的热释感器就采用这种双探测元的结构。

其工作电路原理及设计电路如图2-2所示,在VCC电源端[2]利用C1和R2来稳定工作电压,同样输出端也多加了稳压元件稳定信号。

当检测到人体移动信号时,电荷信号经过FET放大后,经过C2,R1的稳压后使输出变为高电位,再经过NPN的转化,输出OUT为低电平。

双探测热释电红外探头的优缺点

优点:

本身不发任何类型的辐射,器件功耗很小,隐蔽性好。

价格低廉。

缺点:

(1)容易受各种热源、光源干扰。

(2)被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。

(3)易受射频辐射的干扰。

(4)环境温度和人体温度接近时,探测和灵敏度降低,有时造成短时失灵。

干扰性能有以下几种控制方法:

①防小动物干扰:

探测器安装在推荐地使用高度,对探测范围内地面上的小动物,一般不产生报警。

②抗电磁干扰:

探测器的抗电磁波干扰性能符合GB10408中4.6.1要求,一般手机电磁干扰不会引起误报。

③抗灯光干扰:

探测器在正常灵敏度的范围内,受3米外H4卤素灯透过玻璃照射,不产生报警。

图2-2热释电红外传感器原理图

2.3.2红外线热释电传感器的安装要求

红外线热释电人体传感器只能安装在室内,其误报率与安装的位置和方式有极

大的关系.。

正确的安装应满足下列条件:

 

(1)红外线热释电传感器应离地面2.0~2.2米。

 

(2)红外线热释电传感器远离空调,冰箱,火炉等空气温度变化敏感的地方。

(3)红外线热释电传感器探测范围内不得隔屏、家具、大型盆景或其他隔离物。

 (4)红外线热释电传感器不要直对窗口,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。

红外线热释电传感器也不要安装在有强气流活动的地方。

红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。

红外线热释电传感器对于径向移动反应最不敏感,而对于横切方向(即与半径垂直的方向)移动则最为敏感.在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。

3、单片机的概述

3.1单片机的发展历史

将8位单片机的推出作为起点,单片机的发展历史大致可分为以下几个阶段

(1)第一阶段(1976—1978):

单片机的控索阶段。

以Intel公司的MCS–48为代表。

MCS–48的推出是在工控领域的控索,参与这一控索的公司还有Motorola、Zilog等,都取得了满意的效果。

这就是MCS的诞生年代,“单机片”一词即由此而来。

(2)第二阶段(1978––1982)单片机的完善阶段。

Intel公司在MCS–48基础上推出了完善的、典型的单片机系列MCS–51。

它在以下几个方面奠定了典型的通用总线型单片机体系结构。

①完善的外部总线。

MCS–51设置了经典的8位单片机的总线结构,包括8位数据总线、16位地址总线、控制总线及具有很多机通信功能的串行通信接口。

②CPU外围功能单元的集中管理模式。

③体现工控特性的位地址空间及位操作方式。

④指令系统趋于丰富和完善,并且增加了许多突出控制功能的指令。

(3)第三阶段(1982—1990):

8位单片机的巩固发展及16位单片机的推出阶段,也是单片机向微控制器发展的阶段。

Intel公司推出的MCS–96系列单片机,将一些用于测控系统的模数转换器、程序运行监视器、脉宽调制器等纳入片中,体现了单片机的微控制器特征。

随着MCS–51系列的广应用,许多电气厂商竞相使用80C51为内核,将许多测控系统中使用的电路技术、接口技术、多通道A/D转换部件、可靠性技术等应用到单片机中,增强了外围电路路功能,强化了智能控制的特征。

(4)第四阶段(1990—):

微控制器的全面发展阶段。

随着单片机在各个领域全面深入地发展和应用,出现了高速、大寻址范围、强运算能力的8位/16位/32位通用型单片机,以及小型廉价的专用型单片机

3.2单片机的应用领域

目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。

导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。

更不用说自动控制领域的机器人、智能仪表、医疗器械了。

因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。

  单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:

(1)在智能仪器仪表上的应用

  单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。

采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。

例如精密的测量设备(功率计,示波器,各种分析仪)。

(2)在工业控制中的应用

  用单片机可以构成形式多样的控制系统和数据采集系统。

例如工厂流水线的智能化管理、电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。

(3)在家用电器中的应用

  可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭褒、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。

(4)在计算机网络和通信领域中的应用

  现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为了在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制。

从手机、电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话、集群移动通信、无线电对讲机等。

(5)单片机在医用设备领域中的应用

  单片机在医用设备中的用途亦相当广泛,例如医用呼吸机、各种分析仪、监护仪、超声诊断设备及病床呼叫系统等等。

(6)在各种大型电器中的模块化应用

  某些专用单片机设计用于实现特定功能,从而在各种电路中进行模块化应用,而不要求使用人员了解其内部结构。

如音乐集成单片机,看似简单的功能,微缩在纯电子芯片中(有别于磁带机的原理),就需要复杂的类似于计算机的原理。

如:

音乐信号以数字的形式存于存储器中(类似于ROM),由微控制器读出,转化为模拟音乐电信号(类似于声卡)。

  在大型电路中,这种模块化应用极大地缩小了体积,简化了电路,降低了损坏、错误率,也方便于更换。

(7)单片机在汽车设备领域中的应用

  单片机在汽车电子中的应用非常广泛,例如汽车中的发动机控制器,基于CAN总线的汽车发动机智能电子控制器,GPS导航系统,ABS防抱死系统,制动系统等等。

  此外,单片机在工商、金融、科研、教育、国防航空航天等领域都有着十分广泛的用途。

3.3AT89S51单片机的概述

AT89S51单片机是美国Atmel公司生产的低电压,高性能的CMOS8位单片机,片内含4kbytes的可反复擦写程序存储器(EPROM)和128bytes的随机存取数据存储器(RAM),器件采用Atmel公司的高密度、非易失性存取技术产生,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash。

存储单元,功能强大。

AT89S51单片机可提供许多高性价比的应用场合,可灵活应用于各种控制领域。

附录A为AT89S51单片机的基本组成功能方块图。

由图可见,在这一块芯片上集成了一台微型计算机的主要组成部分,其中包括CPU、存储器、可编程I/O口、定时器/计数器、串行口等,各部分通过内部总线相连。

下面介绍几个主要部分

(1)中央处理器(CPU)

中央处理器是单片机最核心的部分,是单片机的大脑和心脏,主要完成运算和

控制功能。

AT89S51的CPU是一个字长为8位的中央处理单元,即它对数据的处

理是按字节为单位进行的。

(2)内部数据存储器(内部RAM)

AT89S51中共有256个RAM单元,但其中能作为寄存器供用户使用的仅有前面128个,后128个被专用寄存器占用。

(3)内部程序存储器(内部ROM)

AT89S51共有4KB掩膜ROM,用于存放程序、原始数据等。

(4)定时器/计数器

AT89S51共有2个16位的定时器/计数器,可以实现定时和计数功能。

(5)并行I/O口

AT89S51共有4个8位的I/O口(P0、P1、P2、P3口),可以实现数据的并行输入、输出。

(6)串行口

AT89S51有1个全双工的可编程串行口,以实现单片机和其他设备之间的串行数据传送。

(7)时钟电路

AT89S51单片机内部有时钟电路,但晶振和微调电容需要外接,时钟电路为单片机产生时钟脉冲序列。

(8)终端系统

AT89S51的中断系统功能较强,可以满足一般控制应用的需要。

它共有5个中断源:

2个外部中断源/INTO和/INT1;

3个内部中断源;

即2个定时/计数中断;

1个串行口中断。

由上所述,AT89S51虽然是一块芯片,但它包括了构成计算机的基本部件,因此可以说它是一台简单的计算机。

AT89S51较详细的内部结构见附录B

3.3.1AT89S51单片机的结构

(1)管脚说明

ATMEL公司的AT89S51是一种高效微控制器。

采用40引脚双列直插封装(DIP)

形式,如图3-1所示。

AT89S51单片机是高性能单片机,因为受引脚数目的限制,

所以有不少引脚具有第二功能。

图3-2为AT89S51单片机的封装图。

图3-1DIP封装引脚图

图3-2SMT的封装图

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高电平,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89S51的一些特殊功能口,如下表所示:

表3-1P3口管脚功能表

P3口管脚

备选功能

P3.0RXD

串行输入口

P3.1TXD

串行输出口

P3.2/INT0

外部中断0

P3.3/INT1

外部中断1

P3.4T0

记时器0外部输入

P3.5T1

记时器1外部输入

P3.6/WR

外部数据存储器写选通

P3.7/RD

外部数据存储器读选通

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平

时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许端的输出电平用于锁存地址的地址字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号端。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/Vpp:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;

当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(Vpp)。

  XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

  XTAL2:

来自反向振荡器的输出。

(2)主要特性:

·

与MCS-51兼容

4K字节可编程闪烁存储器

寿命:

1000写/擦循环

数据保留时间:

10年

全静态工作:

0Hz-24Hz

三级程序存储器锁定

128*8位内部RAM

32可编程I/O线

两个16位定时器/计数器

5个中断源

可编程串行通道

低功耗的闲置和掉电模式

片内振荡器和时钟电路

(3)振荡器特性

(1)如图3-3XTAL1和XTAL2分别为反向放大器的输入和输出。

该反向放大器可以配置为片内振荡器。

石晶振荡和陶瓷振荡均可采用。

如采用外部时钟源驱动器件,X

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 求职职场 > 简历

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1