高分子物理习题集Word文档格式.docx
《高分子物理习题集Word文档格式.docx》由会员分享,可在线阅读,更多相关《高分子物理习题集Word文档格式.docx(16页珍藏版)》请在冰豆网上搜索。
第2章聚合物的凝聚态结构
1.名词解释
凝聚态,内聚能密度,晶系,结晶度,取向,高分子合金的相容性。
(1):
凝聚态:
为物质的物理状态,是根据物质的分子运动在宏观力学性能上的表现来区分的,通常包括固体、液体和气体。
(2):
内聚能密度:
CED定义为单位体积凝聚体汽化时所需要的能量,单位:
(3):
晶系:
根据晶体的特征对称元素所进行的分类。
(4):
结晶度:
试样中的结晶部分所占的质量分数(质量结晶度
)或者体积分数(体积结晶度
(5):
取向:
聚合物的取向是指在某种外力作用下,分子链或其他结构单元沿着外力作用方向的择优排列。
(6):
高分子合金的相容性:
两种或两种以上高分子,通过共混形成微观结构均一程度不等的共混物所具有的亲和性。
2.什么叫内聚能密度?
它与分子间作用力的关系如何?
如何测定聚合物的内聚能密度?
(1)内聚能密度:
(2)内聚能密度在300
以下的聚合物,分子间作用力主要是色散力;
内聚能密度在400
以上的聚合物,分子链上有强的极性基团或者分子间能形成氢键;
内聚能密度在300-400
之间的聚合物,分子间相互作用居中。
3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?
各种结晶形态的特征是什么?
(1)可能得到的结晶形态:
单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体;
(2)形态特征:
单晶:
分子链垂直于片晶平面排列,晶片厚度一般只有10nm左右;
树枝晶:
许多单晶片在特定方向上的择优生长与堆积形成树枝状;
球晶:
呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;
纤维状晶:
晶体呈纤维状,长度大大超过高分子链的长度;
串晶:
在电子显微镜下,串晶形如串珠;
柱晶:
中心贯穿有伸直链晶体的扁球晶,呈柱状;
伸直链晶体:
高分子链伸展排列晶片厚度与分子链长度相当。
4.测定聚合物的结晶度的方法有哪几种?
简述其基本原理。
不同方法测得的结晶度是否相同?
(1)密度法,X射线衍射法,量热法;
(2)密度法的依据:
分子链在晶区规整堆砌,故晶区密度大于非晶区密度;
X射线衍射法的依据:
总的相干散射强度等于晶区和非晶区相干散射强度之和;
量热法的依据:
根据聚合物熔融过程中的热效应来测定结晶度的方法。
(3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。
5.高分子液晶的分子结构有何特点?
根据分子排列有序性的不同,液晶可以分为哪几种晶型?
(1)高分子液晶分子结构特点:
1.分子主干部分是棒状(筷形),平面状(碟形)或曲面片状(碗形)的刚性结构,以细长棒状最为常见;
b.分子中含有对位苯撑,强极性基团,可高度极化或可形成氢键的基团,因而在液态下具有维持分子作某种有序排列所需要的凝聚力;
c.分子上可能含有一定的柔性结构。
(2)液晶晶型:
a.完全没有平移有序—向列相即N相,用单位矢量
表示;
b.一维平移有序(层状液晶)—近晶A(
)和近晶C(
);
c.手征性液晶,包括胆甾相(Ch)和手征性近晶相;
d.盘状液晶相。
(3)液晶态的表征一般为:
a.偏光显微镜下用平行光系统观察;
b.热分析法;
c.X射线衍射;
d.电子衍射;
e.核磁共振;
f.电子自旋共振;
g.流变学;
h.流变光学。
6.简述液晶高分子的研究现状,举例说明其应用价值。
液晶高分子被用于制造防弹衣,缆绳及航空航天器大型结构部件,可用于新型的分子及原子复合材料,适用于光导纤维的被覆,微波炉件,显示器件信息传递变电检测
7.取向度的测定方法有哪几种?
举例说明聚合物取向的实际意义。
(1)用光学显微镜测定双折射来计算;
(2)用声速法测定;
(3)广角X射线衍射法;
(4)红外二向色性;
(5)偏正荧光法。
8.某结晶聚合物的注射制品中,靠近模具的皮层具有双折射现象,而制品内部用偏光显微镜观察发现有Maltese黑十字,并且越靠近制品芯部,Maltese黑十字越大。
试解释产生上述现象的原因。
如果降低模具的温度,皮层厚度将如何变化?
(1)由于形成球晶,球晶具有双折射现象,自然光经过偏振片变为偏振光,通过球晶发生双折射,分成两束振动方向垂直的偏振光,两束偏振光在与检偏镜平行方向上存在分量,分量速度不同,产生相位差而干涉,使呈现黑十字消光图像,制品外部与模具接触,冷却速度快,球晶来不及生长而成多层片晶或小球晶,而制品芯部温度高,结晶时间充分,生长为大球晶,因此消光图像更大。
(2)降低温度会增加过冷度,缩短结晶时间,因而皮层厚度增加。
10.简述提高高分子合金相容性的手段
提高高分子合金的相容性一般用加入第三组分增溶剂的方法。
增溶剂可以是与A、B两种高分子化学组成相同的嵌段或接枝共聚物,也可以是与A、B的化学组成不同但能分别与之相容的嵌段或接枝共聚物。
第3章
高分子溶液
1.溶度参数的含义是什么?
“溶度参数相近原理”判断溶剂对聚合物溶解能力的依据是什么?
(1)溶度参数:
是指内聚能密度的平方根;
(2)依据是:
,因为溶解过程
>
0,要使
<
0,
越小越好,又因为
?
,所以
与
越相近
就越小,所以可用“溶度参数相近原理”判断溶剂对聚合物的溶解能力。
2.什么叫高分子θ溶液?
它与理想溶液有何本质区别?
(1)高分子θ溶液:
是指高分子稀溶液在θ温度下(Flory温度),分子链段间的作用力,分子链段与溶剂分子间的作用力,溶剂分子间的作用力恰好相互抵消,形成无扰状态的溶液。
此时高分子—溶剂相互作用参数为1/2,内聚能密度为0.
(2)理想溶液三个作用力都为0,而θ溶液三个作用力都不为0,只是合力为0.
3.Flory-Huggins晶格模型理论推导高分子溶液混合熵时作了哪些假定?
混合热表达式中Huggins参数的物理意义是什么?
(1)假定:
a.溶液中分子排列也像晶体中一样,为一种晶格排列;
b.高分子链是柔性的,所有构象具有相同的能量;
c.溶液中高分子“链段”是均匀分布的,即“链段”占有任一格子的几率相同。
(2)物理意义:
反映高分子与溶剂混合时相互作用能的变化。
4.什么叫排斥体积效应?
Flory-Kingbuam稀溶液理论较之晶格模型理论有何进展?
(1)排斥体积效应:
在高分子稀溶液中,“链段”的分布实际上是不均匀的,高分子链以一个被溶剂化了的松懈的链球散布在纯溶剂中,每个链球都占有一定的体积,它不能被其他分子的“链段”占有。
(2)进展:
把“链段”间的排斥体积考虑进去,更符合实际。
7.计算下列三种情况下溶液的混合熵,讨论所得结果的意义。
(1)99e12个小分子A与1e8个小分子B相混合(假定为理想溶液);
(2)99e12个小分子A与1e8个小分子B(设每个大分子“链段”数x=1e4)相混合(假定符合均匀场理论);
(3)99e12个小分子A与1e12个小分子B相混合(假定为理想溶液)。
答案见作业本
8.在20℃将10-5mol的聚甲基丙烯酸甲酯(
=105,ρ=1.20g/cm3)溶于179g氯仿(ρ=1.49g/cm3)中,试计算溶液的混合熵、混合热和混合自由能。
(已知χ1=0.377)
;
第4章聚合物的分子量和分子量分布
1.什么叫分子量微分分布曲线和体积分布曲线?
两者如何相互转换?
(1)微分分布曲线:
表示聚合物中分子量(M)不同的各个级分所占的质量分数
或摩尔分数[x(M)];
积分分布曲线:
表示聚合物中分子量小于和等于某一值的所有级分所占的质量分数[I(M)]
或摩尔分数。
转换:
2.测定聚合物数均和重均分子量的方法有哪几种?
每种方法适用的分子量范围如何?
(1)测定数均分子量的方法:
端基分析法、沸点升高、冰点下降、气相渗透压(范围<
(2)测量重均分子量的方法:
光散射法(
3.证明渗透压法测得的分子量为数均分子量。
渗透法测定分子量依据为
时,
所以:
即渗透压法测得分子量为数均分子量。
4.采用渗透压法测得试样A和B和摩尔质量分别为4.20e5g/mol和1.25e5g/mol,试计算A、B两种试样等质量混合物的数均分子量和重均分子量。
;
5.35℃时,环己烷为聚苯乙烯(无规立构)的θ溶剂。
现将300mg聚苯乙烯(ρ=1.05g/cm3,
=1.5e5)于35℃溶于150ml环己烷中,试计算:
(1)第二维利系数A2;
(2)溶液的渗透压。
(1)
(2)
7.推导一点法测定特性粘度的公式:
(1)[η]=
(2)[η]=
其中
/
证明:
(1)
(2)
9.现有一超高分子量的聚乙烯试样,欲采用GPC方法测定其分子量和分子量分布,试问:
(1)能否选择GPC法的常用溶剂THF?
如果不行,应该选择何种溶剂?
(2)常温下能进行测定吗?
(3)如何计算该试样的数均、重均和粘均分子量。
第5章
聚合物的转变与松弛
1.以分子运动观点和分子间物理缠结概念说明非晶态聚合物随着温度升高粘弹行为的4个区域,并讨论分子量对应力松弛模量-温度曲线的影响规律。
答:
(1)a.玻璃态区,玻璃化温度以下,分子运动主要限于振动和短程的旋转运动;
b.玻璃-橡胶转变区,可解析为远程、协同分子运动的开始;
c.橡胶-弹性平台区,由于分子间存在几个链段平行排列的物理缠结,聚合物呈现远程橡胶弹性;
d.末端流动区,物理缠结来不及松弛,材料仍然表现为橡胶行为,温度升高,发生解缠作用,导致整个分子产生滑移运动,即产生流动,这种流动是作为链段运动结果的整链运动。
(2)聚合物分子量越高,橡胶-弹性平台就越长。
2.讨论结晶、交联聚合物的模量-温度曲线和结晶度、交联度对曲线的影响规律。
略。
3.写出四种测定聚合物玻璃化温度的方法,简述其基本原理。
不同实验方法所得结果是否相同?
(1)a.膨胀计法,热膨胀的主要机理是克服原子间的主价力和次价力,膨胀系数较小;
b.量热法,聚合物在玻璃化时的热学性质的变化;
c.温度-形变法,利用聚合物玻璃化转变时形变量的变化来测定其玻璃化温度;
d.核磁共振法,利用电磁性质
的变化研究聚合物玻璃化转变的方法。
(2)不同,略。
4.聚合物的玻璃化转变是否是热力学相变?
聚合物的玻璃化转变并不是一个真正的热力学相变。
因为非晶态聚合物发生玻璃化转变时,其体积,焓或熵是连续变化,而K,α出现不连续的变化,要使体系达到热力学平衡,需要无限缓慢的变温速率和无限长的
测试时间,实验上不可能做到,因此,玻璃化温度的测定过程体系不能满足热力学平衡条件,转变过程是一个松弛过程,所测得的玻璃化温度不是一个真正的热力学相变。
6.玻璃化转变的热力学理论基本观点是什么?
热力学研究表明,相转变过程中自由能是连续的,而与自由能的导数有关的性质发生不连续的变化。
非晶态聚合物发生玻璃化转变时,其体积、焓或熵是连续变化的,但K出现不连续的变化。
实际上,玻璃化温度的测定过程体系不能满足热力学的平衡条件,转变过程是一个松弛过程,所得值依赖于变温速率及测试方法(外力作用速率)
7.聚合物晶体结构和结晶过程与小分子晶体结构和结晶过程有何差别?
造成这些差别的原因是什么?
(1)小分子有分子晶体、原子晶体和离子晶体,而高分子晶体仅有分子晶体,且仅是分子链的一部分形成的晶体。
这是由于高分子的分子链很长,可穿越多个晶胞。
(2)小分子的熔点是一个确定值,而高分子的熔点是一个范围值。
(3)高分子有结晶度的概念,而小分子没有。
这是由于高分子结构的复杂性,使得聚合物结晶要比小分子结晶有更多的缺陷,所以结晶总是很不完善,有晶区和非晶区,用结晶读表示。
(4)高聚物的结晶过程分一次结晶(主结晶)和二次结晶(次级结晶)。
这是由于高分子的相对分子质量大,体系黏度大,分子运动迟缓所引起的。
8.测定聚合物结晶速度有哪些方法?
简述其原理和主要步骤。
(1)膨胀计法、光学解偏振法和示差扫描量热法(DSC)。
原理:
聚合物结晶过程中,从无序的非晶态排列成高度有序的晶态,由于密度变大,会发生体积收缩即可研究结晶过程。
主要步骤:
方法是将试样与跟踪液(通常是水银)装入一膨胀计中,加热到聚合物熔点以上,使其全部熔融。
然后将膨胀计移入恒温槽内,观察毛细管内液柱的高度随时间的变化。
(2)偏光显微镜法和小角激光光散射法。
用单位时间里球晶半径增加的长度作为观察温度下球晶的径向生长速度。
将试
样熔融后立即进行等温结晶,观察球晶的半径随时间的增长变化,以球晶半径对时间作图,可得一直线。
9.比较下列各组聚合物的Tg高低并说明理由:
(1)聚二甲基硅氧烷,顺式聚1,4-丁二烯;
聚二甲基硅氧烷〈顺式聚1,4-丁二烯
(2)聚己二酸乙二醇酯,聚对苯二甲酸乙二醇酯;
答:
聚己二酸乙二醇酯〈聚对苯二甲酸乙二醇酯(3)聚丙烯,聚4-甲基-1-戊烯;
聚丙烯〈聚4-甲基-1-戊烯(4)聚氯乙烯,聚偏二氯乙烯答:
聚氯乙烯〉聚偏二氯乙烯
10.以结构观点讨论下列聚合物的结晶能力:
聚乙烯、尼龙66、聚异丁烯。
聚乙烯,结构简单,对称又规整,所以非常容易结晶。
尼龙66,化学结构及几何结构均较规整,没有键接方式问题,也较容易结晶。
聚异丁烯,分子链具有较高的对称性,可以结晶,但由于取代基的空间位阻以及化学结构的不规整性,使其较难结晶。
第6章
橡胶弹性
1.高弹性有哪些特征?
为什么聚合物具有高弹性?
在什么情况下要求聚合物充分体现高弹性?
什么情况下应设法避免高弹性?
(1)高弹性特征:
a.弹性模量很小;
b.形变量很大;
c.弹性模量随绝对温度的升高正比的增加;
d.形变时有明显的热效应。
(2)略(3)略
2.试述交联橡胶平衡态髙弾形变热力学分析的依据和所得结果的物理意义。
依据:
热力学第一定律和第二定律,
物理意义:
橡胶变形后的张应力可以看成是由熵的变化和内能的变化两部分组成。
只有熵才能贡献的弹性叫熵弹性,橡胶拉伸时内能变化很小,主要是熵的变化。
内能的变化是橡胶拉伸时放热的原因。
3.简述橡胶弹性统计理论的研究现状与展望,说明橡胶弹性唯象理论的优缺点。
4.什么叫热塑性弹性体?
举例说明其结构与性能关系。
(1)热塑性弹性体是一种兼有塑料和橡胶特性、在常温下显示橡胶高弹性、高温下又能塑化成型的高分子材料,又称为第三代橡胶。
(2)苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS),PB分散相Tg高于室温,构成物理交联区域;
故SBS室温下为弹性体,高温下发生粘性流动,可以塑化成型。
第7章聚合物的粘弹性
1.举例说明聚合物的蠕变、应力松弛、滞后和内耗现象。
为什么聚合物具有这些现象?
这些现象对其的使用性能存在哪些利弊?
2.简述温度和外力作用频率对聚合物内耗大小的影响。
画出聚合物的动态力学普示意图,举出两例说明谱图在研究聚合物结构与性能方面的应用。
3.指出Maxwell模型、Kelvin模型和四元件模型分别适宜于模拟哪一类型聚合物的那一种力学松弛过程?
Maxwell模型适宜于模拟线形聚合物的应力松弛过程,Kelvin模型适宜于模拟交联聚合物的蠕变过程,四元件模型适宜于模拟线形聚合物的蠕变过程。
4.什么是时温等效原理?
该原理在预测聚合物材料的长期使用性能方面和在聚合物加工过程中各有哪些指导意义?
(1)升高温度与延长时间对分子运动是等效的,对聚合物的粘弹行为也是等效的,这就是时温等效原理。
(2)需要在室温条件下几年甚至上百年完成的应力松弛实验实际上是不能实现的,但可以在高温条件下短期内完成;
或者需要在室温条件下几十万分之一秒或几百万分之一秒中完成的应力松弛实验,可以在低温条件下几个小时甚至几天内完成。
5.定量说明松弛时间的含意。
为什么说作用力的时间相当时,松弛现象才能被明显地观察到?
(1)松弛时间
是粘性系数和弹性系数的比值;
(2)如果外加应力作用时间极短,材料中的粘性部分还来不及响应,观察到的是弹性应变。
反之,若应力作用的时间极长,弹性应变已经回复,观察到的仅是粘性流体贡献的应变,材料可考虑为一个简单的牛顿流体。
只有在适中的应力作用时间,材料的粘弹性才会呈现,应力随时间逐渐衰减到零,这个适中的时间正是松弛现象的内部时间尺度松弛时间τ
8.将一块橡胶试片一端夹紧,另一端加上负荷,使之自由振动。
已知振动周期为0.60s,振幅每一周期减少5%,试计算:
(1)橡胶试片在该频率(或振幅)下的对数减量(△)和损耗角正切(tgδ);
(2)假若△=0.02,问多少周期后试样的振动振幅将减少到起始值的一半?
(2)21。
9.分别写出纯粘性液体(粘滞系数η)、理想弹性体(弹性模量E)、Maxwell单元(EM、
ηM)和Kelvin单元(EK,Ηk)在t=0时加上一恒定应变速度K后应力(δ)随时间(t)的变化关系,并以图形表示之。
(1)δ=KEt,图形为一过原点直线。
(2)δ=Kη,图形为一水平直线。
(3)δ=Kη-ηexp(-Et/η),图形为一条斜率逐渐减小的曲线。
(4)δ=KEt+ηK图形为一直线,与纵轴交点在横轴上方。
第8章聚合物的屈服和断裂
1.名词解释:
脆-韧转变点;
细颈;
剪切带;
银纹;
应力集中;
疲劳。
脆-韧转变点:
在一定应变速率下,作断裂应力和屈服应力分别与温度T的关系曲线,两条曲线的交点就是脆韧屈服转变点。
细颈:
高分子材料试样条在拉伸实验中,试条某点的横截面突然快速下降的现象。
剪切带:
只发生在局部带状区域内的剪切变形。
银纹:
聚合物在张应力作用下,于材料某些薄弱地方出现应力集中而产生局部的塑性形变和取向,以至在材料表面或内部垂直于应力方向上出现长度为100μm、宽度为10μm左右、厚度约为1μm的微细凹槽。
应力集中:
受力材料在形状、尺寸急剧变化的局部或内部缺陷(孔、裂缝等)的附近出现应力显著增大的现象。
疲劳:
材料或构件在周期应力作用下断裂或失效的现象,是材料在实际使用中常见的破裂
形式。
4.简述几种组合应力作用下材料的屈服判据,比较不同判据之间的差异。
(1)单参数屈服判据(Tresca判据和最大形变能理论),只受正应力和切应力;
(2)双参数屈服判据(Coulomb判据或MC判据),受正应力、切应力和正压力。
此外考虑流体静压力的改进的Tresca和VonMises判据也适用。
5.何谓聚合物的强度?
为什么理论强度比实际强度高很多倍?
6.简述聚合物增强、增韧的途径和机理。
聚合物增强途径:
通过添加增强剂来形成复合材料;
机理:
形成复合材料,可以传递应力,避免基体应力集中,提高力学强度。
聚合物的增韧途径:
添加增塑剂。
银纹机理、银纹-剪切带机理、三轴应力空化机理、刚性粒子增韧机理。
7.下列几种聚合物的抗冲击性能如何?
(T<
Tg)
(1)聚苯乙烯;
(2)聚苯醚;
(3)聚碳酸酯;
(4)ABS;
(5)聚乙烯
(1)聚苯乙烯,因主链挂上体积庞大的侧基苯环,使之称为难以改变构象的刚性链,使得冲击性能不好,为典型的脆性聚合物。
(2)聚苯醚,因主链含有刚性的苯环,故为难以改变构象的刚性链,冲击性能不好。
(3)聚碳酸酯,由于主链中含酯基,在-120摄氏度可产生局部模式运动,称之为β转变。
在T<
Tg时,由于外力作用,β转变吸收冲击能,使聚合物上的能量得以分散,因此冲击性能好,在常温下可进行冷片冲压成型,即常温塑性加工。
(4)ABS,因ABS具有多相结构,支化的聚丁二烯相当于橡胶微粒分散在连续的塑料相中,相当于大量的应力集中物,当材料受到冲击时,它们可以引发大量的裂纹,从而能吸收大量的冲击能,所以冲击性能好。
(5)聚乙烯,由于聚乙烯链节结构极为规整和对称,体积又小,所以聚乙烯非常容易结晶,而且结晶度比较高。
由于结晶限制了链段的运动,使之柔性不能表现出来,所以冲击性能不好。
高压聚乙烯由于支化多,破坏了链的规整性,结晶度低些,冲击性能稍好些。
8.如何采用物理改性的方法制备下列材料?
简述其改性机理。
(1)抗冲击聚丙烯塑料;
(2)高强度丁苯橡胶;
(3)高强度尼龙纤维;
(4)高强度、高耐折射性的聚酯薄膜;
(5)高强度环氧树脂。
9.用低密度聚乙烯改性尼龙的研究和应用报道很多。
该种共混体系相容性很差,用什么方法可以改善两者的相容性?
用什么实验手段可以说明相容性确实显著提高了?
第9章聚合物的流变性
1.什么是假塑性流体?
绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?
(1)流动指数n<
1的流体称为假塑性流体;
2.聚合物的粘性流动有何特点?
3.为什么聚合物的粘流活化能与分子量无关?
根据自由体积理论,高分子的流动不