第14讲圆类面积计算学Word文档格式.docx
《第14讲圆类面积计算学Word文档格式.docx》由会员分享,可在线阅读,更多相关《第14讲圆类面积计算学Word文档格式.docx(10页珍藏版)》请在冰豆网上搜索。
辅导科目:
奥数
学科教师:
授课主题
第13讲——圆类面积计算
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
熟练掌握圆类面积计算的八种方法:
相加法、相减法、重新组合法、割补法、平移法、旋转法、对称添补法、重叠法;
并能运用上述方法快速解题。
授课日期及时段
T(Textbook-Based)——同步课堂
圆的面积:
,扇形的面积:
。
无特殊说明,圆周率都取π=3.14。
考点1:
相加法
将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。
例1、下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。
考点2:
相减法
将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。
例1、下图中,若求阴影部分的面积,只需先求出正方形的面积再减去里面圆的面积即可。
考点3:
重新组合法
将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形的面积即可。
例1、欲求下图中阴影部分的面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时就可以采用相减法求出其面积了。
考点4:
割补法
将原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决。
例1、如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分的面积恰是正方形面积的一半。
考点5:
平移法
将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。
例1、下图中,欲求阴影部分的面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
考点6:
旋转法
将图形中某一部分切割下来之后,使之沿某一点或者某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则图形,便于求出面积。
例1、欲求下图
(1)中阴影部分的面积,可以将左半图形绕B点逆时针方向旋转180度,使A与C重合,从而构成如下图
(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积。
考点7:
对称添补法
作出原图形的对称图形,从而得到一个新的基本规则图形,原来图形的面积就是这个新图形的一半。
例1、下图中,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD。
弓形CBD的面积的一半就是所求阴影部分的面积。
考点8:
重叠法
将所求图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”解决。
注:
容斥原理:
例1、欲求下图阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分。
P(Practice-Oriented)——实战演练
Ø
课堂狙击
1、求图中阴影部分的面积(单位:
厘米)。
2、下图是一个直角等腰三角形,直角边长2厘米,求图中阴影部分面积。
3、如右图,阴影部分的面积为2平方厘米,求等腰直角三角形的面积。
4、ABC是等腰直角三角形.D是半圆周的中点,BC是半圆的直径,已知:
AB=BC=10,那么阴影部分的面积是多少?
(圆周率
)
5、右图中4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?
6、如图所示,求图中阴影部分的面积(单位:
课后反击
2、求如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。
3、在图中,正方形的边长是10厘米,求图中阴影部分的面积。
4、三角形ABC是直角三角形,阴影部分①的面积比阴影部分②的面积小28平方厘米.AB长40厘米,求BC长。
5、如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。
求长方形ABO1O的面积。
6、如图所示,求图中阴影部分的面积。
1、(2016年希望杯第18题)如图,圆O的直径AB与CD互相垂直,AB=20厘米,以C为圆心,CA为半径画圆弧AB,则阴影部分的面积是()平方厘米。
2、(2013年希望杯第5题)如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1—S2=cm2(圆周率
取3)。
S(Summary-Embedded)——归纳总结
有些圆类面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
有些图形可以根据“容斥问题“的原理来解答。
在正方形里的最大圆的面积占所在正方形的面积的
而在圆内的最大正方形占所在圆的面积的
在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。
本节课我学到
我需要努力的地方是