锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx

上传人:b****6 文档编号:18760250 上传时间:2023-01-01 格式:DOCX 页数:82 大小:279.26KB
下载 相关 举报
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx_第1页
第1页 / 共82页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx_第2页
第2页 / 共82页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx_第3页
第3页 / 共82页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx_第4页
第4页 / 共82页
锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx_第5页
第5页 / 共82页
点击查看更多>>
下载资源
资源描述

锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx

《锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx(82页珍藏版)》请在冰豆网上搜索。

锂离子电池容量衰减机理和副反应翻译个人翻译的外文文献Word文档下载推荐.docx

Lithium-IonBatteries

锂离子电池容量衰减机机理和副反应

PankajAroratandRalphE.White*

作者:

CenterForElectrochemicalEngineering,DepartmentofChemicalEngineering,UniversityofSouthCarolina,Columbia,SouthCarolina29208,USA

美国,南卡罗来纳,年哥伦比亚29208,南卡罗来纳大学,化学工程系,中心电化学工程

ABSTRACT

Thecapacityofalithium-ionbatterydecreasesduringcycling.Thiscapacitylossorfadeoccursduetoseveraldifferentmechanismswhichareduetoorareassociatedwithunwantedsidereactionsthatoccurinthesebatteries.Thesereactionsoccurduringoverchargeoroverdischargeandcauseelectrolytedecomposition,passivefilmformation,activematerialdissolution,andotherphenomena.Thesecapacitylossmechanismsarenotincludedinthepresentlithium-ionbatterymathematicalmodelsavailableintheopenliterature.Consequently,thesemodelscannotbeusedtopredictcellperformanceduringcyclingandunderabuseconditions.Thisarticlepresentsareviewofthecurrentliteratureoncapacityfademechanismsandattemptstodescribetheinformationneededandthedirectionsthatmaybetakentoincludethesemechanismsinadvancedlithium-ionbatterymodels.

 

Introduction

Thetypicallithium-ioncell(Fig.1)ismadeupofacokeorgraphitenegativeelectrode,anelectrolytewhichservesasanionicpathbetweenelectrodesandseparatesthetwomaterials,andametaloxide(suchasLiCoO2,LiMn2O4,orLiNiO2)positiveelectrode.Thissecondary(rechargeable)lithium-ioncellhasbeencommercializedonlyrecently.Batteriesbasedonthisconcepthavereachedtheconsumermarket,andlithium-ionelectricvehiclebatteriesareunderstudyinindustry.Thelithium-ionbatterymarkethasbeeninaperiodoftremendousgrowtheversinceSonyintroducedthefirstcommercialcellin1990.Withenergydensityexceeding130Wh/kg(e.g.,MatsushitaCGR17500)andcyclelifeofmorethan1000cycles(e.g.,Sony18650)inmanycases,thelithium-ionbatterysystemhasbecomeincreasinglypopularinapplicationssuchascellularphones,portablecomputers,andcamcorders.Asmorelithium-ionbatterymanufacturersenterthemarketandnewmaterialsaredeveloped,costreductionshouldspurgrowthinnewapplications.SeveralmanufacturerssuchasSonyCorporation,SanyoElectricCompany,MatsushitaElectricIndustrialCompany,MoliEnergyLimited,andA&

TBatteryCorporationhavestartedmanufacturinglithium-ionbatteriesforcellularphonesandlaptopcomputers.Yoda1hasconsideredthisadvancementanddescribedafuturebatterysocietyinwhichthelithium-ionbatteryplaysadominantrole.

Severalmathematicalmodelsoftheselithium-ioncellshavebeenpublished.Unfortunately,noneofthesemodelsincludecapacityfadeprocessesexplicitlyintheirmathematicaldescriptionofbatterybehavior.Theobjectiveofthepresentworkistoreviewthecurrentunderstandingofthemechanismsofcapacityfadeinlithium-ionbatteries.Advancesinmodelinglithium-ioncellsmustresultfromimprovementsinthefundamentalunderstandingoftheseprocessesandthecollectionofrelevantexperimentaldata.

Someoftheprocessesthatareknowntoleadtocapacityfadeinlithium-ioncellsarelithiumdeposition(overchargeconditions),electrolytedecomposition,activematerialdissolution,phasechangesintheinsertionelectrodematerials,andpassivefilmformationovertheelectrodeandcurrentcollectorsurfaces.Quantifyingthesedegradationprocesseswillimprovethepredictivecapabilityofbatterymodelsultimatelyleadingtolessexpensiveandhigherqualitybatteries.Significantimprovementsarerequiredinperformancestandardssuchasenergydensityandcyclelife,whilemaintaininghighenvironmental,safety,andcoststandards.Suchprogresswillrequireconsiderableadvancesinourunderstandingofelectrodeandelectrolytematerials,andthefundamentalphysicalandchemicalprocessesthatleadtocapacitylossandresistanceincreaseincommerciallithium-ionbatteries.Theprocessofdevelopingmathematicalmodelsforlithiumioncellsthatcontainthesecapacityfadeprocessesnotonlyprovidesatoolforbatterydesignbutalsoprovidesameansofunderstandingbetterhowthoseprocessesoccur.

PresentLithium-IonBatteryModels

Thedevelopmentofadetailedmathematicalmodelisimportanttothedesignandoptimizationoflithiumsecondarycellsandcriticalintheirscale-up.Westdevelopedapseudotwo-dimensionalmodelofasingleporousinsertionelectrodeaccountingfortransportinthesolutionphaseforabinaryelectrolytewithconstantphysicalpropertiesanddiffusionoflithiumionsintothecylindricalelectrodeparticles.Theinsertionprocesswasassumedtobediffusionlimited,andhencecharge-transferresistanceattheinterfacebetweenelectrolyteandactivematerialwasneglected.LaterMaoandWhitedevelopedasimilarmodelwiththeadditionofaseparatoradjacenttotheporousinsertionelectrode.Thesemodelscoveronlyasingleporouselectrode;

thus,theydonothavetheadvantagesofafull-cell-sandwichmodelforthetreatmentofcomplex,interactingphenomenabetweenthecelllayers.ThesemodelsconfinethemselvestotreatinginsertionintoTiS2withthekineticsfortheinsertionprocessassumedtobeinfinitelyfast.SpotnitzaccountedforelectrodekineticsintheirmodelfordischargeoftheTiS2,intercalationcathode.

Thegalvanostaticchargeanddischargeofalithiummetal/solidpolymerseparator/insertionpositiveelectrodecellwasmodeledusingconcentrated-solutiontheorybyDoyle.Themodelisgeneralenoughtoincludeawiderangeofseparatormaterials,lithiumsalts,andcompositeinsertionelectrodes.Concentrated-solutiontheoryisusedtodescribethetransportprocesses,asithasbeenconcludedthationpairingandionassociationareveryimportantinsolidpolymerelectrolytes.Thisapproachalsoprovidesadvantagesoverdilutesolutiontheorytoaccountforvolumechanges.Butler-Volmer-typekineticexpressionswereusedinthismodeltoaccountforthekineticsofthecharge-transferprocessesateachelectrode.ThepositiveelectrodeinsertionprocesswasdescribedusingPick'

slawwithaconstantlithiumdiffusioncoefficientintheactivematerial.Thevolumechangesinthesystemandfilmformationatthelithium/polymerinterfacewereneglectedandaverysimplisticcaseofconstantelectrodefilmresistanceswasconsidered.Long-termdegradationofthecellduetoirreversiblereactions(sidereactions)orlossofinterfacialcontactisnotpredictableusingthismodel.

Fullerdevelopedageneralmodelforlithiumioninsertioncellsthatcanbeappliedtoanypairoflithium-ioninsertionelectrodesandanybinaryelectrolytesystemgiventherequisitephysicalpropertydata.Fullerworkdemonstratedtheimportanceofknowingthedependenceoftheopen-circuitpotentialonthestateofchargefortheinsertionmaterialsusedinlithium-ioncells.Theslopesofthesecurvescontrolthecurrentdistributioninsidetheporouselectrodes,withmoreslopedopen-circuitpotentialfunctionsleadingtomoreuniformcurrentdistributionsandhencebetterutilizationofactivematerial.OptimizationstudieswerecarriedoutfortheBellcoreplasticlithium-ionsystem.Themodelwasalsousedtopredicttheeffectsofrelaxationtimeonmultiplecharge-dischargecyclesandonpeakpower.

Doylemodifiedtheduallithium-ionmodeltoincludefilmresistancesonbothelectrodesandmadedirectcomparisonswithexperimentalcelldatafortheLiC6-LiPF6,ethylenecarbonate/dimethylcarbonate(EC/DMC),KynarFLEX-ILiyMn2O4system.Comparisonsbetweendataandthenumericalsimulationssuggestedthatthereisadditionalresistancepresentinthesystemnotpredictedbypresentmodels.Thedischargeperformanceofthecellswasdescribedsatisfactorilybyincludingeitherafilmresistanceontheelectrodeparticlesorbycontactresistancesbetweenthecelllayersorcurrent-collectorinterfaces.OneemphasisofthisworkwasintheuseofthebatterymodelforthedesignandoptimizationofthecellforparticularapplicationsusingsimulatedRagoneplots.

Thermalmodelingisveryimportantforlithiumbatteriesbecauseheatproducedduringdischargemaycauseeitherirreversiblesidereactionsormeltingofmetalliclithium,ChenandEvanscarriedoutathermalanalystsoflithiumionbatteriesduringcharge-dischargeandthermalrunawayusinganenergybalanceandasimplifieddescriptionoftheelectrochemicalbehaviorofthesystem.Theiranalysisofheattransportandtheexistenceofhighlylocalizedheatsourcesduetobatteryabuseindicatedthatlocalizedheatingmayraisethebatterytemperatureveryquicklytothethermalrunawayonsettemperature,abovewhichitmaykeepincreasingrapidlyduetoexothermicsidereactionstriggeredathightemperature.PalsandNewmandevelopedamodeltopredictthethermalbehavioroflithiummetal-solidpolymerelectrolytecellsandcellstacks.Thismodelcoupledanintegratedenergybalancetoafullcell-sandwichmodeloftheelectrochemicalbehaviorofthecells.Bothofthesemodelsemphasizedtheimportanceofconsiderationsofheatremovalandthermalcontrolinlithiumpolymerbatterysystems.

VerbruggeandKochdevelopedamathematicalmodelforlithiumintercalationprocessesassociatedwithacylindricalcarbonmicrofiber.Theycharacterizedandmodeledthelithiumintercalationprocessinsingle-fibercarbonmicroelectrodesincludingtransportprocessesinbothphasesandthekineticsofchargetransferattheinterface.Theprimarypurposeofthemodelwastopredictthepotentialasafunctionoffractionaloccupancyofintercalatedlithium.Theoverchargeprotectionfo

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 自然景观

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1