最新最全模糊数学方法综合整理文档格式.docx

上传人:b****6 文档编号:18757057 上传时间:2023-01-01 格式:DOCX 页数:21 大小:188.96KB
下载 相关 举报
最新最全模糊数学方法综合整理文档格式.docx_第1页
第1页 / 共21页
最新最全模糊数学方法综合整理文档格式.docx_第2页
第2页 / 共21页
最新最全模糊数学方法综合整理文档格式.docx_第3页
第3页 / 共21页
最新最全模糊数学方法综合整理文档格式.docx_第4页
第4页 / 共21页
最新最全模糊数学方法综合整理文档格式.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

最新最全模糊数学方法综合整理文档格式.docx

《最新最全模糊数学方法综合整理文档格式.docx》由会员分享,可在线阅读,更多相关《最新最全模糊数学方法综合整理文档格式.docx(21页珍藏版)》请在冰豆网上搜索。

最新最全模糊数学方法综合整理文档格式.docx

A是普通集合而不是模糊集。

由于模糊集的边界是模糊的,如果要把模糊概念转化为数学语言,需要选取不同的置信水平(01)来确定其隶属关系。

截集就是将模糊集转化为普通集的方法。

模糊集A是一个具有游移边界的集合,它随值的变小而增大,即当1<

2时,有A1∩A2。

定义3模糊集运算定义。

若A、B为X上两个模糊集,它们的和集、交集和A的余集都是模糊集,其隶属函数分别定义为:

(AB)(x)=max(A(x),B(x))

(AB)(x)=min(A(x),B(x))

AC(x)=1-A(x)

关于模糊集的和、交等运算,可以推广到任意多个模糊集合中去。

定义4若一个矩阵元素取值为[0,1]区间内,则称该矩阵为模糊矩阵。

同普通矩阵一样,有模糊单位阵,记为I;

模糊零矩阵,记为0;

元素皆为1的矩阵用J表示。

定义5若A和B是n×

m和m×

l的模糊矩阵,则它们的乘积C=AB为n×

l阵,其元素为:

Cij=

(i=1,2,…,n;

j=1,2,…,l)(20.1)

符号“∨”和“∧”含意的定义为:

a∨b=max(a,b),a∧b=min(a,b)。

模糊矩阵乘法性质包括:

1)(AB)C=A(BC);

2)AI=IA=A;

3)A0=0A=0;

4)AJ=JA;

5)若A、B为模糊矩阵且aijbij(一切i,j),则AB,又若AB,则ACBC,CACB。

2.模糊分类关系

模糊聚类分析是在模糊分类关系基础上进行聚类。

由集合的概念,可给出如下定义:

定义6n个样品的全体所组成的集合X作为全域,令XY={(X,Y)|xX,yY},则称XY为X的全域乘积空间。

定义7设R为XY上的一个集合,并且满足:

1)反身性:

(xi,yi)R,即集合中每个元素和它自己同属一类;

2)对称性:

若(x,y)R,则(y,x)R,即集合中(x,y)元素同属于类R时,则(y,x)也同属于R;

3)传递性:

(x,y)R,(y,z)R,则有(x,z)R。

上述三条性质称为等价关系,满足这三条性质的集合R为一分类关系。

聚类分析的基本思想是用相似性尺度来衡量事物之间的亲疏程度,并以此来实现分类,模糊聚类分析的实质就则是根据研究对象本身的属性未构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系。

3.模糊聚类

利用模糊集理论进行聚类分析的具体步骤如下:

(1)若定义相似系数矩阵用的是定量观察资料,在定义相似系数矩阵之前,可先对原始数据进行变换处理,变换的方法同系统聚类分析,可参考第17章系统聚类分析一节。

(2)计算模糊相似矩阵。

设U是需要被分类对象的全体,建立U上的相似系数R,R(i,j)表示i与j之间的相似程度,当U为有限集时,R是一个矩阵,称为相似系数矩阵。

定义相似系数矩阵的工作,原则上可以按系统聚类分析中的相似系数确定方法,但也可以用主观评定或集体打分的办法。

DPS平台,对数据集

提供了以下8种建立相似矩阵的方法:

①相关系数法:

②最大最小法:

③算术平均最小法:

④几何平均最小法:

⑤绝对指数法:

⑥绝对值减数法:

⑦夹角余弦法:

⑧欧氏距离:

(3)聚类分析。

用上述方法建立起来的相似关系R,一般只满足反射性和对称性,不满足传递性,因而还不是模糊等价关系。

为此,需要将R改造成R*后得到聚类图,在适当的阈值上进行截取,便可得到所需要的分类。

将R改造成R*,可用求传递闭包的方法。

R自乘的思想是按最短距离法原则,寻求两个向量xi与xj的亲密程度。

假设R2=(rij),即rij=

(rik∧rkj),说明xi与xj是通过第三者K作为媒介而发生关系,rik∧rkj表示xi与xj的关系密切程度是以min(rik,rkj)为准则,因k是任意的,故从一切rik∧rkj中寻求一个使xi和xj关系最密切的通道。

Rm随m的增加,允许连接xi与xj的链的边就越多。

由于从xi到xj的一切链中,一定存在一个使最大边长达到极小的链,这个边长就是相当于

在实际处理过程中,R的收敛速度是比较快的。

为进一步加快收敛速度,通常采取如下处理方法:

R→R2→R4→R8→…→R2k

即先将R自乘改造为R2,再自乘得R4,如此继续下去,直到某一步出现R2k=Rk=R*。

此时R*满足了传递性,于是模糊相似矩阵(R)就被改造成了一个模糊等价关系矩阵(R*)。

(4)模糊聚类。

对满足传递性的模糊分类关系的R*进行聚类处理,给定不同置信水平的,求

阵,找出R*的显示,得到普通的分类关系。

当=1时,每个样品自成一类,随值的降低,由细到粗逐渐归并,最后得到动态聚类谱系图。

4.DPS平台操作示例

首先在编辑状态下输入编辑数据,格式是每一行为一个样本,每一列为一个变量,然后将待分析的数据定义成数据矩阵块,在菜单方式下选择“模糊数学模糊聚类”功能项,回车执行时,系统将提示用户选择数据转换方法:

0.不转换1.数据中心化2.对数转换3.数据规格化4.数据标准化

作出数据转换方式的选择后,系统又将提示选择建立模糊相似关系的计算方法,共有上面所述的8种方法可供选择。

分析输出的结果包括各个样本的联结序号、联结水平、聚类谱系图索引及在屏幕上显示聚类谱系图(拷屏可得到谱系图硬拷贝,或按S将图形文件以“.BMP”格式存放在盘上,然后可在Windows有关应用软件中调出)。

第2节模糊模式识别

1.方法简介

“模式”一词来源于英文Pattern,原意是典范、式样、样品,在不同场合有其不同的含义。

在此我们讲的模式是指具有一定结构的信息集合。

模式识别就是识别给定的事物以及与它相同或类似的事物,也可以理解为模式的分类,即把样品分成若干类,判断给定事物属于哪一类,这与我们前面介绍的判别分析很相似。

模式识别的方法大致可以分为两种,即根据最大隶属原则进行识别的直接法和根据择近原则进行归类的间接法,分别简介如下:

(1)若已知n个类型在被识别的全体对象U上的隶属函数,则可按隶属原则进行归类。

此处介绍的是针对正态型模糊集的情形。

对于正态型模糊变量x,其隶属度为

其中a为均值,b2=22,2为相应的方差。

按泰勒级数展开,取近似值得

若有n种类型m个指标的情形,则第i种类型在第j种指标上的隶属函数是

其中

分别是第i类元素第j种指标的最小值和最大值,

是第i类元素第j种指标的方差。

(2)若有n种类型(A1,A2,…,AN),每类都有m个指标,且均为正态型模糊变量,相应的参数分别为

(i=1,2,…,n;

j=1,2,…,m)。

其中,

是xij的方差。

待判别对象B的m个指标分别具有参数aj,bj(j=1,2,…,m),且为正态型模糊变量,则B与各个类型的贴近度为

记Si=

,又有Si0=

,按贴近原则可认为B与Ai0最贴近。

幼虫发生量

发生期

增殖系数

类别

第二代

第三代

第二代

二至三代

三至四代

1

1962

344

3333

29

9

9.69

1.91

2

1963

121

1497

27

19

12.37

1.34

3

1964

187

1813

32

18

9.70

1.06

:

1988

162

2817

34

21

2.64

0.00

28

1989

760

877

39

33

1.15

1990

458

199

35

0.43

0

图303模糊识别分析的数据编辑定义图

根据如上介绍,DPS系统中设计了两个功能模块:

一是根据在集合上的隶属函数,按隶属原则识别对象,判定样本的类别归属;

二是根据模糊集两两之间的贴近度,按择近原则,确定出最接近的两个模糊集。

2.DPS平台的操作示例

系统规定数据输入的格式是每一行为一个样本,每一列为一个变量。

最右边的一列为样本的已知类别(如1,2,…)。

(注意每一类中至少要有三个样本)。

对于待判别的样本,其分类类别用0表示。

所有待分析数据(连同类别一起)需定义成数据块,然后进入菜单操作,选择“模糊数学模糊识别”功能项,回车执行后即可输出分析结果。

输出结果包括各类参数(变量名、最小值、最大值、标准差和参数B)和各待判样本的归类结果(样本序号、对各类贴近度的最大值、最贴近的类号)。

注意事项:

系统最多可处理20个因子,100个样本。

例如,在“有序样本最优分割”一节中,我们将历年三化螟发生动态根据最优分割结果分成3类,即将三化螟种群消长过程划分为猖獗缓和猖獗三个阶段,这样的划分结果与该县历年水稻种植制度(一季中稻为主纯双季稻单双季混栽)的变化是相吻合的。

为识别1988年之后三化螟发生动态,我们也可以应用模糊识别方法进行分析。

现将待识别数据和原来的历史资料按上页图303方式整理编辑和定义。

完成数据编辑定义之后,执行选项功能“模糊识别”,便可得到如下结果:

第1类

变量名最小值最大值标准差参数B

X

(1)121.000000500.000000148.979746210.689178

X

(2)1497.0000004600.0000001243.9473461759.207208

X(3)27.00000036.0000003.3115964.683304

X(4)9.00000019.0000003.5777095.059644

X(5)8.00000012.3700001.6712082.363445

X(6)1.0600001.9100000.3411550.482466

第2类

X

(1)19.0000002100.000000587.039979830.199901

X

(2)25.0000002700.000000948.2482861341.025587

X(3)22.00000040.0000005.0472137.137837

X(4)14.00000028.0000004.3234606.114296

X(5)0.13000010.9600002.7547763.895841

X(6)0.5500004.1700001.0928981.545592

第3类

变量名最小值最大值准差参数B

X

(1)34.0000002243.000000725.4704081025.970090

X

(2)401.0000007452.0000002400.9240933395.419414

X(3)31.00000039.0000002.6692703.774917

X(4)18.00000029.0000003.7321005.277987

X(5)1.90000011.7900003.2501084.596346

X(6)0.0000001.0900000.4628170.654523

各个待判样本的归类结果

样本序号对各类贴近度的最大值最贴近的类号

10.425643

20.897723

从分析结果可以看出,1989年和1990年三化螟发生动态仍和前几年相似,表明农业生态系统是相对稳定的。

第3节模糊相似优先比方法

相似优先比是模糊性度量的一种形式,它是以成对的样本与一个固定的样本作比较,确定哪一个与固定样本更相似,从而选择与固定样本相似程度较大者。

假定样本xi和xj与固定样本xk进行比较,其相似优先比Rij必须满足如下要求:

(1)若Rij在[0.5,1.0]之间,则表示xi比xj优先。

(2)若Rij在[0.0,0.5]之间,则表示xj比xi优先。

(3)在极值情形下有三种可能:

如果Rij=1,则表示xi比xj显然优先;

如果Rij=0,则表示xj比xi显然优先;

如果Rij=0.5,则xi和xj不分伯仲,优先无法确定。

在模糊优先比分析中,一般采用海明(Harming)距离作为相似优先比中Rij的测度。

如对样本xi和样本xj与固定样本xk之间进行比较,海明距离可定义为

Rji=1-Rij

式中dki=|xk-xi|,dkj=|xk-xj|,接下来,对给定的一样本集合X={x1,x2,…,xn}和固定样本xk,令任意xi、xjX和xk作比较,即计算两两样本间的相似优先比,从而得到模糊相关矩阵:

R=(rij)

建立模糊相似矩阵之后,由水平集选出相似样本,亦即在相似矩阵中,从大到小地选定值,以在值下降过程中首先到达的除主对角线元素外全行都为1的那一行的样本最相似,然后删除矩阵相应的行和列,并降低水平值,继续寻找。

依此类推,直至截距处理完毕。

一般情形下,若每个样本有m个因素,则对每一因素都有一个模糊相似矩阵,所以,每一样本的每一因素都将产生一个反映相似程度的序号值,最后将每一样本各个因素的序号值相加,其结果便是该样本与固定样本相似程度的综合反映。

样本的序号值越小,该样本与固定样本就越相似,但严格地说,各个因素对样本的影响程度是不一样的,因此有必要给各个因素赋予一定的权重,这样得到的结果将更符合实际情况。

所以当,用户在对有关因素影响的轻重程度有比较大的把握,或在分析中需突出某个因素时,可对各个因素进行加权处理以达到更好的分析效果。

数据的输入编辑格式是每一行为一个样本,每一列为一个变量,最右边的一列为已知样本的代码(用1表示)和待识别样本的代码(用0表示),并将数据和待识别样本一起定义成数据块。

在菜单下选择“模糊数学相似优先比分析”,执行该项功能后系统将输出分析结果。

结果包括待识别样本与各样本间的海明距离以及待识别样本与其它样本各个因素的模糊优先比矩阵R,最后给出待判样品对各已知样品各变量相似程度和待判样品对各已知样品的优先比值,并按顺序排列。

例如,高素华(1981)对日本柑橘主要产地之一福冈和我国合肥、武汉、长沙、桂林、温州和成都等7地柑橘生长的农业气候相似程度进行了分析,选用各地年均温、年降水量、年日照时数、年极端最低气温和1月均温作为相似因子。

现运用模糊相似优先比方法在DPS平台上进行分析。

其数据输入、编辑整理和数据块的定义如图304所示,

地点

年均温

年降水量

年日照时数

年最低气温

1月均温

识别标识

合肥

15.7

970

2309

-20.6

1.9

武汉

16.3

1260

2085

-17.3

2.8

上海

1129

2039

-9.4

3.3

长沙

17.2

1422

1726

-9.5

4.6

桂林

18.8

1874

1709

-4.9

8.0

温州

17.9

1698

1846

-4.5

7.5

成都

976

1239

-4.6

5.6

日本福冈

16.2

1492

2000

-8.2

6.2

图304模糊优先比分析的数据编辑定义图

在执行运算时,系统会提示用户输入各个因素权重比例(注意各比例之和须等于1),这时如直接回车表示不考虑加权处理。

本例分析结果如下。

待报样本1与各个样本间绝对值

x10.5000522.0000309.000012.40004.3000

x20.1000232.000085.00009.10003.4000

x30.5000363.000039.00001.20002.9000

x41.000070.0000274.00001.30001.6000

x52.6000382.0000291.00003.30001.8000

x61.7000206.0000154.00003.70001.3000

x70.1000516.0000761.00003.60000.6000

X1的模糊优先比矩阵R

(1)

1.0000.1670.5000.6670.8390.7730.167

0.8331.0000.8330.9090.9630.9440.500

0.5000.1671.0000.6670.8390.7730.167

0.3330.0910.3331.0000.7220.6300.091

0.1610.0370.1610.2781.0000.3950.037

0.2270.0560.2270.3700.6051.0000.056

0.8330.5000.8330.9090.9630.9441.000

X2的模糊优先比矩阵R

(2)

1.0000.3080.4100.1180.4230.2830.497

0.6921.0000.6100.2320.6220.4700.690

0.5900.3901.0000.1620.5130.3620.587

0.8820.7680.8381.0000.8450.7460.881

0.5770.3780.4870.1551.0000.3500.575

0.7170.5300.6380.2540.6501.0000.715

0.5030.3100.4130.1190.4250.2851.000

X3的模糊优先比矩阵R(3)

1.0000.2160.1120.4700.4850.3330.711

0.7841.0000.3150.7630.7740.6440.900

0.8880.6851.0000.8750.8820.7980.951

0.5300.2370.1251.0000.5150.3600.735

0.5150.2260.1180.4851.0000.3460.723

0.6670.3560.2020.6400.6541.0000.832

0.2890.1000.0490.2650.2770.1681.000

X4的模糊优先比矩阵R(4)

1.0000.4230.0880.0950.2100.2300.225

0.5771.0000.1170.1250.2660.2890.283

0.9120.8831.0000.5200.7330.7550.750

0.9050.8750.4801.0000.7170.7400.735

0.7900.7340.2670.2831.0000.5290.522

0.7700.7110.2450.2600.4711.0000.493

0.7750.7170.2500.2650.4780.5071.000

X5的模糊优先比矩阵R(5)

1.0000.4420.4030.2710.2950.2320.122

0.5581.0000.4600.3200.3460.2770.150

0.5970.5401.0000.3560.3830.3100.171

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1