小学六年级上册数学知识点大全17单元Word文件下载.docx
《小学六年级上册数学知识点大全17单元Word文件下载.docx》由会员分享,可在线阅读,更多相关《小学六年级上册数学知识点大全17单元Word文件下载.docx(10页珍藏版)》请在冰豆网上搜索。
画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:
画一条线段图。
2、找单位“1”:
单位“1”在分率句中分率的前面;
或在“占”、“是”、“比”“相当于”的后面。
3、写数量关系式的技巧:
(1)“的”相当于“×
”,“占”、“相当于”“是”、“比”是“=”
(2)分率前是“的”字:
用单位“1”的量×
分率=具体量
甲数是20,甲数的1/3是多少?
列式是:
20×
1/3
4、看分率前有没有多或少的问题;
分率前是“多或少”的关系式:
(比少):
单位“1”的量×
(1-分率)=具体量;
甲数是50,乙数比甲数少1/2,乙数是多少?
50×
(1-1/2)
(比多):
(1+分率)=具体量
小红有30元钱,小明比小红多3/5,小红有多少钱?
(1+3/5)
3、求一个数的几倍是多少:
用一个数×
几倍;
4、求一个数的几分之几是多少:
用一个数×
几分之几。
5、求几个几分之几是多少:
用几分之几×
个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法:
(1)、单位“1”的量×
(1-分率)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
第二单元位置与方向
(二)
一、确定物体位置的方法:
1、先找观测点;
2、再定方向(看方向夹角的度数);
3、最后确定距离(看比例尺)
二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:
1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:
东--西;
南--北;
南偏东--北偏西。
第三单元分数除法
三、倒数
1、倒数的意义:
乘积是1的两个数互为倒数。
强调:
互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:
(1)、求分数的倒数:
交换分子分母的位置。
(2)、求整数的倒数:
把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:
把带分数化为假分数,再求倒数。
(4)、求小数的倒数:
把小数化为分数,再求倒数。
3、1的倒数是1;
因为1×
1=1;
0没有倒数,因为0乘任何数都得0,(分母不能为0)
4、真分数的倒数大于1;
假分数的倒数小于或等于1;
带分数的倒数小于1。
5、运用,a×
2/3=b×
1/4求a和b是多少。
把a×
1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
1、分数除法的意义:
乘法:
因数×
因数=积
除法:
积÷
一个因数=另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
1/2÷
3/5意义是:
已知两个因数的积是1/2与其中一个因数3/5,求另一个因数的运算。
2、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。
3、分数除法比较大小时的规律:
(1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
(3)当除数等于1,商等于被除数。
“[]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题
1,解法:
(1)方程:
根据数量关系式设未知量为X,用方程解答。
解:
设未知量为X(一定要解设),再列方程用X×
公鸡有20只,是母鸡只数的1/3,母鸡有多少只。
(单位一是母鸡只数,单位一未知.)解:
设母鸡有X只。
列方程为:
X×
1/3=20
(2)算术(用除法):
单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷
对应分率=单位“1”的量
(单位一是母鸡只数,单位一未知,)用除法,列式是:
20÷
2、看分率前有没有比多或比少的问题;
具体量÷
(1-分率)=单位“1”的量;
桃树有50棵,比苹果树少1/6,苹果树有多少棵。
50÷
(1-1/6)
具体量 ÷
(1+分率)=单位“1”的量
一种商品现在是80元,比原价增加了1/7,原价多少?
80÷
(1+1/7)
3、求一个数是另一个数的几分之几是多少:
用一个数除以另一个数,结果写为分数形式。
男生有20人,女生有15人,女生人数占男生人数的几分之几。
15÷
20=15/20=3/4
4、求一个数比另一个数多几分之几的方法:
用两个数的相差量÷
单位“1”的量=分数
即①求一个数比另一个数多几分之几:
用(大数–小数)÷
另一个数(比那个数就除以那个数),结果写为分数形式。
5比3多几分之几?
(5-3)÷
3=2/3
②求一个数比另一个数少几分之几:
3比5少几分之几?
5=2/5
说明:
多几分之几不等于少几分之几,因为单位一不同。
5、工程问题:
把工作总量看作单位“1”,合做多长时间完成一项工程用1÷
效率和,即1÷
(1/时间+1/时间),(工作效率=1/时间)
一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?
列式:
1÷
(1/5+1/10+1/3)
第四单元比
(一)、比的意义
1、比的意义:
两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如15:
10=15÷
10=3/2(比值通常用分数表示,也可以用小数或整数表示)
15 ∶ 10 = 3/2
前项比号后项 比值
3、比可以表示两个相同量的关系,即倍数关系。
例:
长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
路程÷
速度=时间。
4、区分比和比值
比:
表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:
相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、 比和除法、分数的联系:
比前项比号“:
”后项比值
除法被除数除号“÷
”除数商
分数分子分数线“—”分母分数值
7、比和除法、分数的区别:
除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:
0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:
用前项除以后项,结果最好是写为分数(不会约分的就不约分)
15∶10 =15÷
10=15/10=3/2
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:
被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:
分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:
比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:
(2)用求比值的方法。
最后结果要写成比的形式。
15∶10=15÷
10=15/10=3/2=3∶2
还可以15∶10=15÷
10=3/2 最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:
把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
一般有两种解题法
1,用分率解:
按比例分配通常把总量看作单位一,即转化成分率。
要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
有糖水25克,糖和水的比为1:
4,糖和水分别有几克?
1+4=5糖占1/5用25×
1/5得到糖的数量,水占4/5用25×
4/5得到水的数量。
2,用份数解:
要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。
糖和水的份数一共有1+4=5一份就是25÷
5=5糖有1份就是5×
1水有4分就是5×
4
第五单元圆的认识
一、认识圆形
1、圆的定义:
圆是由曲线围成的一种平面图形。
2、圆心:
将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.
3、半径:
连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:
通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同一个圆内或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。
用字母表示为:
d=2r或r=d/2
8、轴对称图形:
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1条对称轴的图形有:
角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:
长方形;
只有3条对称轴的图形是:
等边三角形;
只有4条对称轴的图形是:
正方形;
有无数条对称轴的图形是:
圆、圆环。
11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。
二、圆的周长
1、圆的周长:
围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:
(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。
或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。
发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。
3、圆周率:
任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
4、圆的周长公式:
圆的周长等于圆周率乘直径用字母表示C=πd
(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示
d=C÷
π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr
(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,
用字母表示r=C÷
2π(r=C/2π)
5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:
(1)、周长的一半:
等于圆的周长÷
2
计算方法:
2πr÷
2即C半=πr
(2)半圆的周长:
等于圆的周长的一半加直径。
计算方法:
半圆的周长=5.14r(推导过程C半=2πr÷
2+d=πr+d=πr+2r=5.14r)
三、圆的面积
1、圆的面积:
圆所占平面的大小叫做圆的面积。
用字母S表示。
2、圆面积公式的推导:
(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。
(2)拼出的图形与圆的周长和半径的关系。
圆的半径 = 长方形的宽
圆的周长的一半 = 长方形的长
3、圆面积的计算方法:
因为:
长方形面积=长×
宽
所以:
圆的面积=圆周长的一半×
圆的半径
即S圆=C÷
2×
r=πr×
r=πr
圆的面积公式:
S圆=πr→ r=S圆÷
π
4、环形的面积:
一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。
(R=r+环的宽度.)
S环=πR-πr或环形的面积公式:
S环=π(R-r)(建议用这个公式)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。
6、两个圆:
半径比=直径比=周长比;
而面积比等于这比的平方。
两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9
7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:
4∶π
8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。
9、常用各π值结果:
π=3.14;
2π=6.28;
5π=15.7
10、外方内圆(内切圆)公式S=0.86r推导过程:
S=S正-S圆=d-πr =2r×
2r-πr=4r-πr=r×
(4-π)=0.86r
11、外圆内方(外切圆)公式S=1.14r推导过程:
S=S圆-S正=πr-dr/2×
2=2r×
r/2×
r=πr-2r=r×
(π-2)=1.14r(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)
12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
扇形的面积与圆心角大小和半径长短有关。
13、S扇=S圆×
n/360;
S扇环=S环×
n/360
14、扇形也是轴对称图形,有一条对称轴。
15、常见半径与直径的周长和面积的结果。
半径半径的平方直径周长面积
1126.283.14
24412.5612.56
39618.8428.26
416825.1250.24
5251031.478.5
6361237.68113.04
7491443.96153.86
8641650.24200.96
9811856.52254.34
101002062.8314
1.52.2539.427.065
2.56.25515.719.625
3.512.25721.9838.465
4.520.35928.2663.585
5.530.251134.5494.985
7.556.251547.1176.625
第六单元百分数
一、百分数的意义和写法
(一)、百分数的意义:
表示一个数是另一个数的百分之几。
百分数是指的两个数的比,因此也叫百分率或百分比。
(二)、百分数和分数的主要联系与区别:
联系:
都可以表示两个量的倍比关系。
区别:
①、意义不同:
百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:
通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
二、百分数和分数、小数的互化
(一)百分数与小数的互化:
1、小数化成百分数:
把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
2.百分数化成小数:
把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
(二)百分数的和分数的互化
1、百分数化成分数:
先把百分数改写成分母是100的分数,能约分要约成最简分数。
2、分数化成百分数:
①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
(建议用这种方法)
(三)常见分数小数百分数之间的互化;
三、用百分数解决问题
(一)一般应用题
1、常见的百分率的计算方法:
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
男生有20人,女生有15人,女生人数占男生人数的百分之几。
20=15/20=75﹪
3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:
(1)百分率前是“的”:
单位“1”的量×
百分率=百分率对应量
(2百分率前是“多或少”的数量关系:
(1±
百分率)=百分率对应量
4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解法:
(1)方程:
百分率对应量÷
对应百分率=单位“1”的量
5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。
只是结果要写为百分数形式。
看百分率前有没有比多或比少的问题;
百分率前是“多或少”的关系式:
(1-百分率)=单位“1”的量;
大米有50千克,比面粉树少50﹪,面粉有多少千克。
(1-50﹪)
(1+百分率)=单位“1”的量
工人做110个零件,比原计划多做了10﹪,原计划做多少个?
110÷
(1+10﹪)
6、求一个数比另一个数多百分之几的方法:
方法与分数的方法相同。
单位“1”的量=百分之几
即①求一个数比另一个数多百分之几:
另一个数(比那个数就除以那个数),结果写为百分数形式。
甲比乙多几分之几的问题,方法A,(甲-乙)÷
乙(建议用)
方法B,甲÷
乙-100﹪
老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?
(50-40)÷
40=0.25=25﹪
乙比甲少几分之几的问题,方法A,(甲-乙)÷
甲(建议用)
方法B,100﹪-乙÷
甲
张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?
(100-90)÷
100=0.1=10﹪
多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷
a﹪)
8、求价格先降a﹪又上升a﹪后的价格:
1×
(1-a﹪)×
(1+a﹪)(假设原来的价格为“1”。
求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
第七单元:
扇形统计图
一、扇形统计图的意义:
用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:
1、条形统计图:
可以清楚的看出各种数量的多少。
2、折线统计图:
不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:
能够清楚的反映出各部分数量同总数之间的关系。
(要在统计图上写出百分率)
三、扇形的面积大小:
在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)
四、应用:
1.会观察统计图。
2、你得到什么数学信息?
回答①、***占总体的百分之几;
②、**占的百分比最多,**占的百分比最少;
3、你还能提什么数学问题:
**和**一共占百分之几。
数学广角:
数与形
1、每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用平方数的形式来表示。
1+3=221+3+5=321+3+5+7=42 得出:
从1起连续奇数的和等于奇数个数的平方。
2、从2起连续偶数的和等于偶数个数的平方加偶数个数(即(n2+n),或等于偶数个数乘比偶数个数大1的数即n×
(n+1)。
补充内容(位置)
1、我们用数对(数对:
由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”)确定点的位置。
如数对(3,5)表示:
(第三列,第五行)
竖排叫列(从左往右看)横排叫行(从前往后看),先数列再数行。
2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述,平移时图形的现状不变。
3、图形左、右平移:
行不变;
图形上、下平移:
列不变
补充内容(“鸡兔同笼”问题)
一、“鸡兔同笼”问题的特点:
题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。
二、“鸡兔同笼”问题的解题方法
1、假设法
(1)假如都是兔
(2)假如都是鸡;
(一般假设都是大数(脚多的),再求出两个脚的相差量,用大的相差量除以小的相差量得到小数(脚少的)最后再用总的头减小数得