砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx

上传人:b****5 文档编号:18680951 上传时间:2022-12-31 格式:DOCX 页数:7 大小:27.74KB
下载 相关 举报
砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx_第1页
第1页 / 共7页
砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx_第2页
第2页 / 共7页
砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx_第3页
第3页 / 共7页
砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx_第4页
第4页 / 共7页
砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx

《砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx(7页珍藏版)》请在冰豆网上搜索。

砷化镓与硅半导体制造工艺的差异分析Word文档下载推荐.docx

在PA的应用上仍是以砷化镓为主要制造材料近年来由于无线通讯迅速的发展,许多中国台湾地区厂商相继投入Ⅲ一V族半导体砷化镓产业基于中国台湾地区过去在硅IC制造工艺成功的经验,业者莫不希望能继硅半导体后,砷化镓IC产业能成为中国台湾地区另一波IC制造业的高峰,此乃因为二者同为IC产业,在工艺技术方面,有些硅制造工艺的技术及设备可以直接转移到砷化镓制造工艺上,而中国台湾地区在硅IC产业制造工艺上已有雄厚的基础.虽是如此,但是由于材料不同的关系,导致磊晶成长方式,黄光,蚀刻,金属化制造工艺以及后段背面处理等工艺技术,皆不尽相同,参考表1,因此以下即以砷化镓制造工艺与硅制造工艺的技术面差异进行比较,并就中国台湾地区砷化镓产业的发展进行市场面的分析与探讨.砷化镶与硅半导体制造工艺差异分析由于材料不同的关系,砷化镓与硅半导体制造的工艺技术并不相同.在器件方面,硅1{2器件绝大部分是金属氧化半导体(MOS)器件,因为硅最大的优势可以成长出品质良好的氧化层结构,利用这层氧化层制造出目前我们最常用的MOS晶体管.而砷化镓虽然无法成长出良好的氧化层结构,但有先天的高电子迁移率的材料特性优势,及可利用不同的III—V族元素组成不同的能带结构,而设计出异质接面(heterojunction)器件,这些特性使得III—V族材料发展出极高速各种不同的电子器件,如高电子迁移率晶体管(HEMT)和异质接面双载子晶体管(HBT)等,目前砷化镓IC产业即是以此类异质接面器件为最主要产品.硅MOS制造方式主要是在硅基板上,经由热氧化形成氧化层,再经离子布植掺杂形成主动层及殴姆接触,其后经金属化及金属蚀刻~I2艺技术制作出MOS器件.但砷化镓制造工艺却大不相同,如砷化镓HEMT器件其主动层主要是以M0CVD或MBE的磊晶成长方式,成长出所要的磊晶结构经由离子布植或蚀刻的方式制作绝缘层,再镀上资料来源:

2002年通iK产业研讨会;

工业技术研究院mK(2003/05)奥姆金属,并经由高温退火形成良好的奥姆接触.

门极制作是先经门

46篓2003/9

TRENDANALYS}趋势扫描极蚀刻,其后镀上萧基接触金属,经由掀离(1ift一主动层,即使是有磊晶成长(如BipolarJunction

off)的方式完成门极电极.金属连接导线是以电镀传输线及空气桥结构完成,最后使用PECVD成长氮化硅(SiN)保护层,同时并有极为复杂的后段背面处理工艺技术,包含半导体磨薄,背面穿孔,溅镀连接导线等.半导体制造工艺完成后,最后切割形成IC或单独器件.图1为HEMT器件前端及Transistor,BJT),皆是以cVD为主,并无精确控制其接口成分的必要性.另外目前新兴以硅锗(SiGe)材料为主的BiCMOS制造工艺,其磊晶成长主要以uHVcVD技术为主,成长时需在工艺技术中使用选择性成长方式以便与CMOS技术集成,因此并无像砷化镓磊晶一般有专业代工厂成长磊晶层.后端工艺技术的流程介绍,以下就各个制造工艺部...微影制造工艺分硅和砷化镓IC不同处作简单的探讨.

在一般微影制造工艺方面,砷化镓也有很多前段工艺技术的差异

主动层的形成由于目前砷化镓器件市场定位以高性能特性取胜,因此器件皆以异质接面方式成长为主,以求达到最佳的器件功能,目前器件以HEMT及HBT为市场主流,主要都是以磊晶成长方式完成.在磊晶方面,由于砷化和硅制造工艺不同的地方,目前砷化镓代工以4英寸及6英寸较多,大部分工艺技术是使用步进机(stepper)来曝光形成高分辨率的图案,而有少数几层制造工艺,如HEMT的0.15微米以下的门极制造工艺,是使用电子束微影工艺技术,此外半导体后段背面处理工艺技术,则是使用接触式曝光机(contactaligner)完成.在光源方面,目前砷化

IcR0

2O03,9

≯TREND

ASlS趋势扫描

镓是使用I-line的灯源,而在硅IC厂商中小线宽工艺技术使用的深紫外线(DeepuV)光源,由于目前造价昂贵,且砷化镓小线宽Ic需求量不是很大,因此一般砷化镓厂商很少使用此光源.在半导体载具方面,目前硅基板最大尺寸为12英寸,而砷化镓最大只有6英寸,且由于砷化镓半导体较硅半导体易碎,所以机台在自动置人砷化镓半导体时,移动速度需要较慢,才不会导致砷化镓芯片碎裂,因此虽然砷化镓使用的I—line步进机大致与硅使用者相同,机台的载具仍需经过特殊改装.由于砷化镓目前只有6英寸厂,因此步进机大半都是选购硅6英寸厂旧机器改装.

在光学微影部分,最特别的是砷化镓HEMT器件中的门极(gate)金属,基于器件功能要求线宽须小于0.2微米,同时需形成T型门极以降低电阻,所以需要用到电子束(e—beam)微影技术.电子束微影系统的优点在于可以曝出非常精准,高分辨率及尺寸很小的线宽,约小于0.15微米,同时重复性及正品率皆高,但是缺点为机台造价昂贵且量产速度较慢.由于砷化镓目前只有HEMT这一道门极制造工艺需要用到电子束微影系统,所以较不会影响到产能.在电子束微影光阻选择方面,一般是使用PMMA系列,通常需使用多层光阻制造工艺,以达到小线宽,T型门极,掀离(1ift—off)制造工艺的要求.

而在硅IC制造工艺中,目前并没有使用到电子束微影系统,主要因为所需要小线宽层数很多,若使用电子束微影量产速度过慢,相对的成本也会跟着提高,同时电子束微影工艺技术每一层都需要寻找电子束的对准标记,若使用在硅制造工艺上会有无法找到对准标记问题,所以硅IC制造工艺中,目前并没有用到电子束微影技术.而在微48粤MI粤CRO-2003/9小线宽上,硅IC系使用相位移光罩(PSM)技术,配合deepuV步进机生产.金属化制造工艺在金属导线方面,目前硅IC制造工艺中都是使用蚀刻金属的方式来定义导线位置,先沉积整片的金属层,再由光阻定义导线位置,经由蚀刻的方式来形成导线,用此方式可以得到较干净,正品率较高的IC.但是砷化镓器件的金属层结构复杂,通常使用多层金属,才能达到规格的要求.n型砷化镓的奥姆接触(Ohmiccontact)的金属化制造工艺,一般使用金锗/镍/金(AuGe/Ni/Au)系统,此

乃因砷化镓的掺杂质在砷化镓的溶解度不够高不易形成低电阻的奥姆接触.不像硅表面只要经由离子布植掺杂较高浓度的杂质(dopant),就可容易的形成奥姆接触.因llt:

n型砷化镓需要高温退火形成金锗合金,才能得到良好的奥姆接触特性.门极箫基接触(Schottkycontact)金属化制造工艺,

般使用钛/铂/金(Ti/Pt/Au)等多层金属,由于金属层复杂非常不容易蚀刻,所以一般砷化镓制造工艺都使用掀离(1ift—off)技术来形成奥姆,萧基接触金属及连接导线金属及金属化制造工艺.金属掀离技术是砷化镓金属化最主要的工艺技术,此技术不用干式蚀刻方式,可减少干式蚀刻造成表面的破坏伤害,因此较不易产生表面状态(surfacestate)造,成器件特性退化.掀离技术有高分辨率,能够形成小线宽,但缺点为和硅制造工艺由蚀刻所定义出的导线比较下正品率较差.金属掀离技术之制造的方式为:

先旋转涂布上单层或双层对光不同灵敏度的光阻,经由软烤,曝光定义出所要留的金属图案后,经显影后光阻会形成底切(undercut)的结构,再利用电子束蒸镀(electron

TRENDANALY

趋势扫描

be锄evaporation)方式完成此制造工艺,因为电子束蒸镀较有方向性,镀上金属后,再浸泡在丙酮内,则溶剂会渗入有光阻的部分而使金属在光阻上的部分掀离,最后留下所定义的金属导线,因此

般金属掀离制造工艺,皆以电子束蒸镀方式为主,图2为掀离技术示意图.在镀金属薄膜设备方面,一般砷化镓制造工艺常用两种机台,一是电子束蒸镀机(electronbeamevaporator)另,一为溅镀机(sputter).如前述砷化镓的奥姆金属,箫基金属,连接导线等,需要用到掀离技术,就必须使用垂直方向性较好的电子束蒸镀机.而砷化镓还有和硅不同的制造工艺~一背面穿孔(viahole)接地工艺技术,需要使用阶梯覆盖性(stepcoverage较)好的机台,来确定连接金属不会断线,所以需使用溅镀机,使金属能够完全覆盖孔洞.另外,使用溅镀机可以镀上熔点较高的金属如钨金属等,而电子束蒸镀则较不易镀高熔点的金属.

离子布植技术

砷化镓IC制造工艺中离子布植亦是极重要的一环,在器件间绝缘(isolation)方面,砷化镓是使用离子布植的方式打人氦离子等,使砷化镓材料电阻值变大,达到器件间绝缘效果.而硅制造工艺并不是利用离子布植的方式绝缘,而是用挖沟槽的方式,在洞内成长绝缘介质材料造成绝缘的效果.砷化镓的离子布植除了应用在器件间的绝缘部分外,还有用在MESFET的信道层(channe1),形成奥姆接触的高掺杂浓度层,及P型缓冲绝缘层等.而HBT器件由于是属于垂直结构,主动局域(activeregion)较深,所以在作离子布植绝缘时,需要用较高的能量约200~400keY,使用较轻元素的氦离子,才能够植入较深达到绝缘效果

般砷化镓的离子布植,使用能量较高,甚至达400keV,而离子布植机一般使用中,低电流为主,此与硅IC制造工艺使用高电流离子布植机不同蚀刻工艺技术

砷化镓制造工艺中有干式蚀刻和湿式蚀刻,其中湿式蚀刻应用在一些砷化镓材料本身的蚀刻上,为制造工艺上极为关键的步骤.砷化镓湿式蚀刻基本上有非等方向的本质(anisotropic),其使用的蚀刻化学溶液和硅制造工艺不同,如硅是使用硝酸与氢氟酸的}昆合溶液来进行蚀刻,而砷化镓可以用磷酸,双氧水与水的混合溶液蚀刻.比较特492003/9iS趋势扫描别的是,由于砷化镓为二元化合物,在不同面蚀刻后形状会不一样,随着不同平面,不同方向,不同溶液侵蚀,蚀刻后的形状可能为V字型,亦可能为底切(undercut)形状.不同形状对金属导线连接会有影响,例如跨平台端的导线是底切那面的话,就会发生断线问题,另外不同的蚀刻后平面形状对器件的电性也会有影响,所以在光罩金属线路设计上,需要特别注意蚀刻的非等方向性.在干式蚀刻方面,一般硅IC在制造过程中会蚀刻材料层硅,氧化层,介电层和金属等材料,而

砷化镓器件制造工艺中的干式蚀刻主要是以III.V

族半导体材料,介电层和光阻等为主,一般金属并不以干式侵蚀.而使用的机台和硅制造工艺类似,通常普遍使用的设备为活性离子反应器(ReactiveIonEtCher,RIE)和感应耦合式电浆蚀刻机(InductivelyCoupledPlasmaReactor,ICP)等,蚀刻不同材料时所用的反应气体不同,如硅制造工艺中要蚀刻硅或是二氧化硅时,使用四氟化碳(c)和氧气(o),而砷化镓制造工艺中蚀刻砷化镓使用三氯化硼(BCI)或六氟化硫(s)等,蚀刻光阻则使用氧气电浆l其中孔洞(via—hole)蚀刻及氮化镓(GaN)材料蚀刻时需要较高的蚀刻速率,通常以ICP蚀刻为主.

在砷化镓HEMT和MESFET器件制造工艺中,需要有门极蚀刻(gaterecess)工艺技术,可以减少门极和源极间电阻,并且增加器件操作时的崩溃电压(breakdownvoltage),但此制造工艺需要准确的控制蚀刻深度及蚀刻后表面的平整度,临界电压才会平均,也不会有表面状态而造成漏电流及电流无法截止(pinch一

5O2OO3/9

off)的状况,硅IC并没有此门极蚀刻制造工艺.图3为HEMT器件门极蚀刻位置图,此制造工艺目前可使用干式和湿式蚀刻的方式来蚀刻门极,湿式蚀刻不会造成表面材料的伤害,但是整片蚀刻深度不均匀,且再现性较差,较不稳定,目前解决办法可以在中间多成长一层蚀刻停止层(etchstoplayer),可以有效的控制蚀均匀刻深度.而干式蚀刻虽有较佳的选择性侵蚀,可以均匀的控制蚀刻深度,并且再现性较高,但是有可能造成表面的伤害和污染,目前可以在干式蚀刻加溶液稍湿式蚀刻,以减少表面伤害,并得较佳的侵蚀均匀度.而砷化镓器件中,对表面状态较不敏感的低噪声放大器(LownoiseAmplifier,LNA)HEMT可以使用干式蚀刻来蚀刻门极,因为器件信道层(channe1)在磊晶层内,对表面状态较不影响,而用在高功率的PowerMESFET,对器件表面状态较敏感,所以必须使用湿式蚀刻.

D

空气桥技术在金属多层连接导线方面,由于硅器件集成度较砷化镓来的高,为了各器件的电路连结,5,6层的金属导线是必备技术,目前硅IC是使用铝金属导线及低电阻的铜导线技术;

而金属层间的介电质材料,为使电容变小以降低Rc延迟时间,因此会使用lowk介电材料.而为使多层导线能顺利制造,硅IC还有平坦化制造工艺使表面平坦,以利于聚焦及微影工艺技术.而砷化镓为微波器件,其工艺技术的IC集成度并不像硅IC--~,只需要2~3层导线就足够,目前大都是使用金导线,而为了使砷化镓器件在操作更高频率时能降低RC延迟时间,一般使用空气桥(air—bridge)结构制造工艺,因为空气的介电常数为最低值为1,可使电容为最小.除此外电镀的传输线一般以金为主,厚度约2~3微米,如此可使电阻变小,可以有效的增加高频特性,这些都是硅制造工艺中所未使用的技术.背面与后段工艺技术差异分析砷化镓虽然电子速度较快,但由于导热系数较硅来的小所以散热较差,在高频操作时会造成器件温度太高,而影响到电性,所以砷化镓在做完前段工艺技术后,有

后段背面处理工艺技术.

背面处理制造工艺通常为利于器件散热而将基板磨薄,一般低噪声器件约磨薄至100微米,TRENDANALYS趋势扫描而功率器件由于操作时温度较高,需磨薄至50微米散热较好.此外,为减少高频打线的电感效应,通常以穿孔方式接地,此工艺技术使用ICP干式蚀刻进行背面穿孔(viahole),再以溅镀的方式镀上连接导线,因溅镀薄膜阶梯覆盖性较好,才不会有断线问题,将导线以最短的距离连接到背面.由于背面孔洞接地传输距离最短,在高频时才有良好的电性,这也是和硅制造工艺中不一样的地方,以下说明砷化镓半导体背面处理的工艺技术:

半导体薄化技术半导体薄化的目的是为了达到较佳的散热性及电性,通常会将芯片磨薄至150或100m左右的厚度.砷化镓器件操作时,会在极微小的局域内

产生很多的热量,这些热量通常是经由砷化镓背面传出.但是砷化镓半导体的导热性并不佳,因此须将芯片磨薄,让热量尽速传递到导热性良好的金属层,达到良好的散热.电性上的考虑,是因为在MMIC中,微传导带(microstriptransmissionline)的尺寸和芯片厚度有关,厚度越大,晶粒(chips)的尺寸也相对须增大不符成本.而且背面蚀刻穿孔,通常也仅适用于较薄的芯片.半导体薄化可采用半导体研磨(Wafergrinding),半导体研削(waferlapping),半导体抛表2中国台湾地区半导体厂技术领|曩注:

一已完成开发O开发中x未有开发计划资料来源:

工业技术研究院机械所;

工业技术研究院IEK(2003/06)512OO3,9

lS趋势扫描

光(waferpolishing),湿式蚀刻等方法,其中以半导体研磨的效率较高且广被使用.由于III/V族材料(如GaAs)研磨后产生的粉尘会有碍人体健康,因此需要经过处理.半导体研磨时,会造成芯片表

并且浪

层的微缺陷(surfaceandsub—surfacedefect).这些缺陷及表面残留应力,可经由半导体抛光或湿式蚀刻的方式将其去除.半导体背面蚀刻穿孔与金属化制造工艺接将芯片内的晶粒切割分立,此技术广泛使用于硅半导体的处理上.由于砷化镓半导体较薄,因此有些砷化镓半导体厂采用画线及折断(scribe&

amp;

break)技术进行切割一一借助半导体定位平台的精确水平移动,利用钻石刀具在化合物半导体芯片上下运动配合来进行划线切割,再以滚轮或压棒施压于芯片背面,达到垂直折断使晶粒完整分立.由于画线及折断的方法属干式制造工艺(dicing须使用切削液来冷却温度)较不会有污背面穿孔的目的是将正面的金属和背面的接地染芯片的疑虑费的材料也较少.

连接起来,当半导体磨薄后,接着在背面镀上光阻,借助半导体背面图案和正面图案的对准进行曝光,制作出所要的图形,接着用干式蚀刻方式,蚀刻到正面的金属垫(metalpad)为止,然后将光阻去除.蚀刻穿孔大致分成湿式蚀刻及干式蚀刻两种方法,湿式蚀刻是等向性蚀刻(若不考虑晶格结构方向所产生的影响),会有底切的现象,使蚀刻出的底孔过大,但对金属的蚀刻选择性较佳.干式蚀刻可从事非等向性蚀刻,可作较高宽/深比的孔洞.MMIC的背孔工艺技术,通常使用干式蚀刻,尤其是反应式离子蚀刻(reactiveionetching,RIE).常用的干式蚀刻设备,包括感应耦合电浆蚀刻机(ICP),电子回旋共振式电浆蚀刻机(ECR)等.当背面穿孑L完成后,就可使用溅镀方式在背面镀上一层薄金属,然后再用电镀方式镀至所需厚度.角度太直的孔洞会使溅镀金属无法良好沉积于孔洞侧壁,因此前制造工艺所蚀刻的孔洞需有稍微的倾斜角度在背面金属化后,再利用微影,蚀刻的制造工艺将切割道(sawstreet/scribeline)的金属(Au)去除掉,让后续的切割制造工艺更容易进行.在半导体切割部分可分为两种,第一种技术为半导体切割技术(dicingsaw),使用旋转刀具直522OO3,9中国台湾地区目前有四家厂商投注于砷化铱代工虽然目前全球主要通讯IC厂商大部分均为集成器件制造商模式,自行生产芯片并搭配自有系统产品,但在预期全球手机市场仍有4~5亿支的需求且市场在未来数年仍将成长的状况下,看好专业代工制造将有其市场空间,近年来三五族半导体半导体厂相继成立,也使得中国台湾地区成为全球砷化镓专业代工的重镇.中国台湾地区的砷化镓代工业者在1998~2000年间如雨后春笋般先后投资设立,目前中国台湾地区有四家砷化镓代工业者:

宏捷(AWSC),稳懋(win),全球联合通信(GeT),尚达(Suntek),其中稳懋和全球联合通信两家一开始即以6英寸砷化镓半导体技术切人,宏捷,尚达则是由4英寸半导体开始生产,在工艺技术上大半专注于HBT制造工艺,产品应用上多以手机的功率放大器为主.中国台湾地区厂商投入砷化镓产业的半导体代工业务厂商中,其中速度较快的稳懋半导体首先于2000~资1亿美元,兴建全球首座6英寸砷化镓半导体厂,年产规模为10万片.而在南科的宏

捷科技在2000年4月完成4英寸砷化镓半导体生产线,目前已为美商SkyWorks代工产品,提供2mHBT的工艺技术,以及量产制作单晶微波集成电路(MMIC)模块.而另一家由大众集团投资的砷化镓代工厂全球联合通信(a),除手机PAMMICgF,近来也积极接触sAwfilter,光纤DWDM系统用的AWG代工机会,并也朝向微机电方面发展.中国台镓代工产业,历

经2~3年的技术与市场的发展,尽管目前在技术,制造工艺掌握等方面多已就绪,然因产品认证期较长,无线通讯产业景气发展低迷,市场产能过剩,集成器件制造商厂释单情况仍相当暖昧等因素影响,使2O02年中国台湾地区多数砷化镓代工业者发展仍看不到成长以2002年各家砷化镓半导体代工业者营收比较,以稳懋营收约人民币0.6亿元位居中国台湾地区同业首位,尽管2002年营收较2001年有倍数的成长,然以整体砷化镓产业来说,市场供过于求的态势仍然持续,加上国际集成器件制造商大厂委外释出代工订单的意愿仍相当保守,是促使中国台湾地区砷化镓代工业者发展不如预期的主因.由于目前无线主要通讯技术掌控在国外大厂手中,如砷化镓前三大厂RFMD,Vitesse,TriQuint,2001年市占率三者合计即超过四成,因此技术与代工订单取得不易,一般验证期长达9—18个月,而以技转方式又不易取得先进制造工艺且增加生产成本,再者受世界景气影响需求量减低,过去1年客户下单量产意愿不高等.

尤其近期在科胜讯与Alpha经由产品技术互补而合并,取得的新产能并创造出的强劲竞争力,此外同业合并效应已逐渐在欧美等地出现,对正值起步的中国台湾地区砷化镓代工业者来说,短期内也将有一定程度的影响.而在中国台湾地区TRENDANASi≥趋势扫描{整体砷化镓产业发展来看,中国台湾地区相关设计公司不足,关键技术无法掌握与RE模块封装厂缺乏技术研发能力等问题,也将造成中国台湾地区产业发展瓶颈.

目前短期内IC设计业者对砷化镓代工厂来说应仍为主要的客户群,不过由于IC设计业者从产品开发至通过认证时间长达2—3年,而多数RFIC设计业者在近两年才有较大幅度的投入生产,因此短期内欲有大量订单挹注的机会也不甚容易.不过若

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 经济学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1