基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx

上传人:b****5 文档编号:18616640 上传时间:2022-12-29 格式:DOCX 页数:40 大小:694.98KB
下载 相关 举报
基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx_第1页
第1页 / 共40页
基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx_第2页
第2页 / 共40页
基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx_第3页
第3页 / 共40页
基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx_第4页
第4页 / 共40页
基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx_第5页
第5页 / 共40页
点击查看更多>>
下载资源
资源描述

基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx

《基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx》由会员分享,可在线阅读,更多相关《基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx(40页珍藏版)》请在冰豆网上搜索。

基于单片机的多功能智能台灯测控技术与仪器大学论文Word文件下载.docx

Whennoonein,thesystemalsocanmakedesklampextinguishes,inordertoachieveautomaticsaveenergypurposes

Keywords:

Intelligencedesklamp、BISS0001、microcontrollerSTC89C51

第1章绪论1

1.1智能台灯系统概述1

1.2毕业设计内容3

第2章.系统主要器件介绍4

2.1主控芯片介绍4

2.2BISS00018

2.3ADC08098

第3章系统组成及电路设计12

3.1系统组成部分12

3.2电路设计部分13

3.3传感器部分16

第4章软件程序设计18

4.1主程序流程图18

4.2主函数流程图19

第5章结束语20

致谢21

参考文献22

附录23

第1章绪论

1.1智能台灯系统概述

随着科技的高速发展,各种各样的科技产品、家用电器开始走入人们的生活,这一切都大大地提高了人们的工作效率、改善了人们的生活,现在电器的发展趋势是智能化,这样会使人们使用起来更加方便。

随着智能控制理论和人工智能研究的深入,各种更加逼真地模拟人类智能的家用电器会更多地出现,而单片机和智能理论的结合,将来不但更多地改进现行家用电器,而且将会产生全新的家用电器。

家用电器因为单片机的加入而走向智能化,并且随着人们生活水平的提高日益走向平民化,我们的生活也随着家用电器的发展越来越方便、舒适。

随着家用电器的发展,作为家用电器当中的小台灯也要顺应科技的发展步伐走向智能化。

台灯是人们生活中用来照明的一种家用电器。

它一般分为两种,一种是立柱式的,一种是有夹子的。

它的工作原理主要是把灯光集中在一小块区域内,集中光线,便于工作和学习。

一般台灯用的灯泡是白炽灯或者节能灯泡,有的台灯还有应急功能,用于停电时无电照明。

目前,灯具市场上出售的灯具种类繁多,一般台灯均采用220V交流电源供电,日光灯管、白炽灯泡为光源,手动开关或触摸感应式开光来控制。

但这类台灯存在很多弊端,一是电压是不安全电压,给人们使用带来不安全因素;

二是日光灯还具有频闪效应,经常使用会给人的眼睛带来一定的伤害;

三是耗电量大、台灯通常都是以日光灯为主,在几瓦到几十瓦之间;

四是人工化,人们由于手工操作,往往会忘记关灯,这也造成电能的浪费,到目前为止,在灯具市场上,很少见到采用+5V的直流电源供电的一种人体智能台灯,它具有既不会出现触电,使用寿命长、无辐射、又不污染等优点,有许多普通按键台灯所无法比及的优势,智能化台灯一方面可以更节省电能,有利于环保,另一方面可以纠正使用者的坐姿,预防脊椎变形和眼睛近视。

同时,智能台灯在黑暗的时候自动开关灯的功能也让使用者使用起来更方便,省去黑暗摸灯的麻烦。

智能台灯可分为自动和手动两种模式。

在自动模式下,台灯能根据环境光的明暗与人是否被台灯所检测到来自动开启台灯。

在这里设计了以人体红外辐射(波长为9.5um)传感控制电路。

当人体在台灯的范围内时,台灯自动感应环境光线,调节发光亮度,自动感应开灯;

当人体太靠近桌面时,台灯自动感应,警告纠正坐姿,若在一定时间内未离开桌面则自动熄灭。

当人离开时则自动关灯,达到节约能源的目的。

手动模式是灯光亮度不随环境光线变化而变化,可以手动按下调节亮度按键来调节灯光亮度。

本设计还有学习时间计时的功能,可手动设置学习时间,当时间到时,台灯报警,提醒学习时间到了该休息了,此时可以用手或者其它障碍物在红外测距传感器前晃一下或者按一下任意按键就可以停止报警。

台灯是一般家庭的生活必需品,但由于经常忘记关灯而造成巨大的能源浪费。

全球这么多台灯,估算一下,消耗能源可观。

另一个是作为一个必需品,当然要使生活变得更方便,省去了黑暗中开灯的麻烦,并且可以纠正坐姿。

本系统在实验室进行了实物实验。

热释电红外探测器1的距离是4m左右(距离可调),主要是因为般来说是门离书桌的距离;

以便黑暗中时人一到门口则启动,省去了开灯的麻烦,用户可以根据自己的实际情况进行距离调节。

红外测距探测器的距离是20cm左右(距离可调),主要考虑是当学习时,有时坐姿不正,引起身体离桌面太近,容易引起近视,此时台灯发出警告,提醒注意,若在设定的时间内未离开,则强制熄灭。

有时人学习累了,趴在桌子上睡觉,而忘了关灯,这时系统就会检测到,从而启动延时程序,一段时间过后,台灯就会自动熄灭。

1.2毕业设计内容

1.2.1设计内容和实现功能

名称:

基于STC89C51的智能台灯

内容及要求:

设计并制作一种智能台灯,主要是以BISS0001和单片机组成的红外传感控制电路。

其特点是在有人时根据环境光线调节灯光的亮度,无人时关灯,节约能源;

且能纠正坐姿,防止近视。

具体要求如下:

1.以专门感应人体红外信号的热释电红外传感器为基础,以BISS0001信号处理电路,利用单片机进行处理,以达到便于控制的目的;

2.有人在附近时,台灯便会根据环境光线调节灯光亮度,省去了黑暗中摸开关麻烦;

3.当学习时由于靠桌面太近,造成坐姿不正,系统就会提示,以纠正坐姿,防止近视;

4.学习太累了时,趴在桌子上睡会儿时,台灯就会自动熄灭;

5.当无人在时,系统也会使台灯自动熄灭,以达到节省能源的目的

1.2.2系统分析

台灯已是千家万户的必需生活用品,经常由于忘记关灯而造成巨大的能源浪费。

当夜晚来临时,人们又摸黑去开灯,非常不方便。

当人体在台灯的范围内且环境光强较弱时,自动感应开灯;

单片机在本次智能节能台灯设计中的主要控制单元,主要控制电路灯光,控制电路是在单片机的控制下工作。

第2章.系统主要器件介绍

2.1主控芯片介绍

STC89C51是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器。

在单芯片上,拥有灵巧的8位CPU和在系统可编程Flash,使得STC89C51为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

具有以下标准功能:

8k字节Flash,512字节RAM,32位I/O口线,看门狗定时器,内置4KBEEPROM,MAX810复位电路,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口。

另外STC89X51可降至0Hz静态逻辑操作,支持2种软件可选择节电模式。

空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

最高运作频率35Mhz,6T/12T可选。

图2.1STC89C51单片机引脚图

单片机是美国STC公司最新推出的一种新型51内核的单片机。

片内含有Flash程序存储器、SRAM、UART、SPI、PWM等模块。

(一)STC89C51主要功能、性能参数如下:

(1)内置标准51内核,机器周期:

增强型为6时钟,普通型为12时钟;

(2)工作频率范围:

0~40MHZ,相当于普通8051的0~80MHZ;

(3)STC89C51RC对应Flash空间:

4KB;

(4)内部存储器(RAM):

512B;

(5)定时器\计数器:

3个16位;

(6)通用异步通信口(UART)1个;

(7)中断源:

8个;

(8)有ISP(在系统可编程)\IAP(在应用可编程),无需专用编程器\仿真器;

(9)通用I\O口:

32\36个;

(10)工作电压:

3.8~5.5V;

(11)外形封装:

40脚PDIP、44脚PLCC和PQFP等。

(二)STC89C51单片机的引脚说明:

VCC:

供电电压。

GND:

接地。

P0口:

P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。

在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:

P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为第八位地址接收。

P2口:

P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:

P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3.0RXD(串行输入口)

P3.1TXD(串行输出口)

P3.2/INT0(外部中断0)

P3.3/INT1(外部中断1)

P3.4T0(记时器0外部输入)

P3.5T1(记时器1外部输入)

P3.6/WR(外部数据存储器写选通)

P3.7/RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

I/O口作为输入口时有两种工作方式,即所谓的读端口与读引脚。

读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器。

只有读端口时才真正地把外部的数据读入到内部总线。

上面图中的两个三角形表示的就是输入缓冲器CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作。

这是由硬件自动完成的,不需要我们操心,1然后再实行读引脚操作,否则就可能读入出错,为什么看上面的图,如果不对端口置1端口锁存器原来的状态有可能为0Q端为0Q^为1加到场效应管栅极的信号为1,该场效应管就导通对地呈现低阻抗,此时即使引脚上输入的信号为1,也会因端口的低阻抗而使信号变低使得外加的1信号读入后不一定是1。

若先执行置1操作,则可以使场效应管截止引脚信号直接加到三态缓冲器中实现正确的读入,由于在输入操作时还必须附加一个准备动作,所以这类I/O口被称为准双向口。

89C51的P0/P1/P2/P3口作为输入时都是准双向口。

RST:

复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:

当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:

每当用作外部数据存储器时,将跳过一个ALE脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时,ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:

外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:

当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;

当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:

反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:

来自反向振荡器的输出。

2.1.1时钟电路

STC89C51单片机的时钟信号通常有两种方式产生:

一是内部时钟方式,二是外部时钟方式。

内部时钟方式如图3所示。

在STC89C51单片机内部有一振荡电路,只要在单片机的XTAL1(18)和XTAL2(19)引脚外接石英晶体(简称晶振),就构成了自激振荡器并在单片机内部产生时钟脉冲信号。

图中电容C1和C2的作用是稳定频率和快速起振,电容值在5~30pF,典型值为30pF。

晶振CYS的振荡频率范围在1.2~12MHz间选择,典型值为12MHz和6MHz。

图2.2STC89C51内部时钟电路

2.1.2复位电路

当在stc89C51单片机的RST引脚引入高电平并保持2个机器周期时,单片机内部就执行复位操作(若该引脚持续保持高电平,单片机就处于循环复位状态)。

复位电路通常采用上电自动复位和按钮复位两种方式。

最简单的上电自动复位电路中上电自动复位是通过外部复位电路的电容充放电来实现的。

只要Vcc的上升时间不超过1ms,就可以实现自动上电复位。

除了上电复位外,有时还需要按键手动复位。

本设计就是用的按键手动复位。

按键手动复位有电平方式和脉冲方式两种。

其中电平复位是通过RST(9)端与电源Vcc接通而实现的。

按键手动复位电路见图4。

时钟频率用11.0592MHZ时C取10uF,R取10kΩ。

图2.389C52复位电路

2.2BISS0001

BISS0001是一款具有较高性能的传感信号处理集成电路。

它配以热释电红外传感器和少量外接元器件即可构成被动式热释电红外开关,故能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道等敏感区域,或用于安全区域的自动灯光、照明和报警系统。

BISS001的主要功能如下:

1.为CMOS数模混合专用集成电路;

2.具有独立的高输入阻抗运算放大器,可与多种传感器匹配进行信号处理;

3.带有双向鉴幅器,可有效抑制干扰;

4.内设延迟时间定时器和封锁时间定时器;

5.结构新颖,稳定可靠,调解范围宽;

6.内置参考电压,工作电压范围为2~6V。

2.3ADC0809

2.3..1ADC0809的引脚及功能介绍

逐次比较型A/D转换器在精度、速度、和价格上都适中,是最常用的A/D转换器件。

芯片采用的是ADC0809,以下介绍ADC0809的引脚及功能。

芯片如图3-4所示。

图2.4ADC0809的引脚图

ADC0809是一种逐次比较式8路模拟输入、8位数字量输出的A/D转换器。

由图可见,ADC0809共有28个引脚,采用双列直插式封装。

主要引脚功能如下:

⑴IN0-IN7是8路模拟信号输入端。

⑵D0-D7是8位数字量输入端。

⑶A、B、C与ALE控制8路模拟通道的切换,A、B、C分别与3根地址线或数据线相连,3位编码对应8个信道地址端口。

ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。

下面说明各引脚功能。

IN0~IN7:

8路模拟量输入端。

2-1~2-8:

8位数字量输出端。

ADDA、ADDB、ADDC:

3位地址输入线,用于选通8路模拟输入中的一路

ALE:

地址锁存允许信号,输入,高电平有效。

START:

A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC:

A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:

数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:

时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):

基准电压。

Vcc:

电源,单一+5V。

地。

首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。

直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。

当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

转换数据的传送A/D转换后得到的数据应及时传送给单片机进行处理。

数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。

为此可采用下述三种方式。

(1)定时传送方式

对于一种A/D转换器来说,转换时间作为一项技术指标是已知的和固定的。

例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。

可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。

(2)查询方式

A/D转换芯片有表明转换完成的状态信号,例如ADC0809的EOC端。

因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。

(3)中断方式

把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。

不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。

首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。

需要注意的是:

ADC0809虽然有8路模拟通道可以同时输入8路模拟信号,但每个瞬间只能换1路,共享一个A/D转换器进行转换,各路之间的切换由软件改变C、A、B引脚上的代码来实现。

地址锁存与译码电路完成对A、B、C3个地址位进行锁存和译码,其译码输出用于通道选择,其转换结果通过三态输出锁存器存放、输出,因此可以直接与系统数据总线相连,下图为通道选择表。

图2.5

(2)通道选择表

⑷OE、START、CLK为控制信号端,OE为输出允许端,START为启动信号输入端,CLK为时钟信号输入端。

⑸VR(+)和VR(-)为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 临床医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1